

svgwrite 1.4.3 documentation

Welcome! This is the documentation for svgwrite 1.4.3, last updated Jul 14, 2022.

This package is in maintenance mode, no new features will be added, there will
be no change of behavior, just bugfixes will be merged.

If you are looking for a SVG Documentation beyond the official W3C papers, go
to O’Reilly commons: http://commons.oreilly.com/wiki/index.php/SVG_Essentials,
or (german) http://www.selfsvg.info .

Contents

	Overview

	SVG References

	Additional SVG Documentation

	SVG Implementation Status

Modules

	svgwrite module

	utils module

Structural Objects

	BaseElement

	Drawing

	SVG

	Group

	Defs

	Symbol

	Marker

	Use

	Hyperlink

	Script

	Style

Graphical Objects

	Path

	Line

	Rect

	Circle

	Ellipse

	Polyline

	Polygon

	Basic Shapes Examples

	Image

Text Objects

	Text

	TSpan

	TRef

	TextPath

	TextArea

Paint server

	LinearGradient

	RadialGradient

	Pattern

	SolidColor

Masking

	ClipPath

	Mask

Animation

	animate module

	Set

	AnimateMotion

	Animate

	AnimateColor

	AnimateTransform

	SVG Animation Attributes

Filter Effects

	Introduction

	Filter Element

	Filter Primitives Overview

	Common SVG Attributes for Filter Primitives

	feBlend Filter Element

	feColorMatrix Filter Element

	feComponentTransfer Filter Element

	feComposite Filter Element

	feConvolveMatrix Filter Element

	feDiffuseLighting Filter Element

	feDisplacementMap Filter Element

	feFlood Filter Element

	feGaussianBlur Filter Element

	feImage Filter Element

	feMerge Filter Element

	feMorphology Filter Element

	feOffset Filter Element

	feSpecularLighting Filter Element

	feTile Filter Element

	feTurbulence Filter Element

	feDistantLight Filter Element

	fePointLight Filter Element

	feSpotLight Filter Element

MixIns

	ViewBox Mixin

	Transform Mixin

	XLink Mixin

	Presentation Mixin

	MediaGroup Mixin

	Markers Mixin

	Clipping Mixin

Extensions

	Inkscape Extension

Indices and tables

	Index

	Module Index

	Search Page

Document License

Unless otherwise stated, the content of this document is licensed under
Creative Commons Attribution-ShareAlike 3.0 License [http://creativecommons.org/licenses/by-sa/3.0/]

Overview

As the name svgwrite implies, svgwrite creates new SVG drawings, it does not read/import existing drawings, but you can always include other SVG drawings by the <image> entity.

svgwrite has a debugging feature, activated by svgwrite.Drawing(debug=True). This feature is meant to find
SVG errors produced by your code while developing. This validation algorithm is not optimized and therefore very slow for
big SVG files. That will not change in the future. And because it is slow DON’T use it in production code!

If svgwrite without debugging is still too slow, you have to use the lxml package without svgwrite as wrapper. That
is the ugly truth since svgwrite is just a wrapper around xml.etree.ElementTree. If you learn the ElementTree API and the
SVG elements and attributes, you do not need svgwrite.

SVG Elements

Important

Use the factory-methods of the class Drawing to create new objects.
(This is necessary to support validation for different SVG versions.)
All factory-methods have the original SVG Elementname (e.g. Drawing.a(…),
Drawing.g(…), Drawing.symbol(…), Drawing.line(…))

a short example:

dwg = svgwrite.Drawing()
link = dwg.add(dwg.a("http://link.to/internet"))
square = link.add(dwg.rect((0, 0), (1, 1), fill='blue'))

Structural Elements

Drawing, SVG,
Group, Defs,
Symbol, Marker,
Use, Hyperlink

Graphical Elements

Line, Rect,
Circle, Ellipse,
Polyline, Polygon,
Path

Text Objects

Text, TSpan,
TRef, TextPath,
TextArea,

Paint Server

LinearGradient, RadialGradient,
Pattern,

Masking

Mask, ClipPath

Animation

Set, Animate,
AnimateColor, AnimateMotion,
AnimateTransform

Filter Effects

Filter

Mixins

ViewBox,
Transform,
XLink,
Presentation,
MediaGroup,
Markers,
Clipping,

Common Attributes

	Core Attributes

	Conditional Processing Attributes

	Document Event Attributes

	Graphical Event Attributes

	Presentation Attributes

	XLink Attributes

Basic Data Types

W3C: http://www.w3.org/TR/SVG11/types.html

You can always use python-types (int, float) for length, coordinate or angle
values, for length and coordinates the default unit is px, for angles the
default unit is deg, or you can use a string including a unit (e.g. 100in,
1.5cm, 3.141529rad).

Examples:

Drawing(height=100, width=100) # drawing area of 100px x 100px
Drawing(height='10cm', width='20cm') # drawing area of 10cm x 20cm

Numbers

Numbers can be intergers or floats, also in scientific notation:

Note

tiny profile: numbers must not have more than 4 decimal digits in the
fractional part of their decimal expansion and must be in the range -32,767.9999
to +32,767.9999, inclusive

Examples:

	10, -23, 0

	73.1234, -0.002, .154, -.897, +13.2, 0000.123

	1.24E+2, 1.24e+2,1E0, -.0E-1

Angles

The <angle> unit identifier is optional. If not provided, the angle value is assumed to be in degrees.

	unit

	identifier

	description

	deg

	angle in degrees

	(full circle is 360deg)

	grad

	angle in grads

	(full circle is 400grad)

	rad

	angle in radians

	(full circle is 2*PI)

Length

A <length> is a distance measurement, given as a number along with a unit, the
unit identifiers must be in lower case. The meaning of a percentage length value
depends on the attribute for which the percentage length value has been specified.

Two common cases are:

	when a percentage length value represents a percentage of the viewport width or height, and

	when a percentage length value represents a percentage of the bounding box width or height on a given object.

Coordinates

A <coordinate> is a length in the user coordinate system that is the given distance
from the origin of the user coordinate system along the relevant axis (the x-axis
for X coordinates, the y-axis for Y coordinates). Its syntax is the same as that
for <length>.

Units

W3C: http://www.w3.org/TR/SVG11/coords.html#Units

When a coordinate or length value is a number without a unit identifier (e.g., “25”),
then the given coordinate or length is assumed to be in user units (i.e., a value
in the current user coordinate system).

Absolute units identifiers are only recommended for the width and the height
on and situations where the content contains no transformations and it is desirable
to specify values relative to the device pixel grid or to a particular real world
unit size.

Note

tiny profile: no usage of units except for the width and height attributes
of the Drawing object.

	unit

	identifier description

	px

	one px unit is defined to be equal to one user unit

	em

	font-size (actual font height)

	ex

	x-height (height of letter ‘x’ of actual font)

	pt

	point “1pt” equals “1.25px” (and therefore 1.25 user units)

	pc

	pica “1pc” equals “15px” (and therefore 15 user units)

	mm

	millimeter “1mm” would be “3.543307px” (3.543307 user units)

	cm

	centimeter “1cm” equals “35.43307px” (and therefore 35.43307 user units)

	in

	inch “1in” equals “90px” (and therefore 90 user units)

Core Attributes

W3C Reference: http://www.w3.org/TR/SVG11/intro.html#TermCoreAttribute

The core attributes are those attributes that can be specified on any SVG element.

W3C Direct Links

	id [http://www.w3.org/TR/SVG11/struct.html#IDAttribute]

	xml:base [http://www.w3.org/TR/SVG11/struct.html#XMLBaseAttribute]

	xml:lang [http://www.w3.org/TR/SVG11/struct.html#XMLLangAttribute]

	xml:space [http://www.w3.org/TR/SVG11/struct.html#XMLSpaceAttribute]

Conditional Processing Attributes

W3C Reference: http://www.w3.org/TR/SVG11/intro.html#TermConditionalProcessingAttribute

A conditional processing attribute is one that controls whether or not the element
on which it appears is processed. Most elements, but not all, may have conditional
processing attributes specified on them.

W3C Direct Links

	requiredExtensions [http://www.w3.org/TR/SVG11/struct.html#RequiredExtensionsAttribute]

	requiredFeatures [http://www.w3.org/TR/SVG11/struct.html#RequiredFeaturesAttribute]

	systemLanguage [http://www.w3.org/TR/SVG11/struct.html#SystemLanguageAttribute]

Document Event Attributes

W3C Reference: http://www.w3.org/TR/SVG11/intro.html#TermDocumentEventAttribute

A document event attribute is an event attribute that specifies script to run for
a particular document-wide event.

W3C Direct Links

	onabort [http://www.w3.org/TR/SVG11/script.html#OnAbortEventAttribute]

	onerror [http://www.w3.org/TR/SVG11/script.html#OnErrorEventAttribute]

	onresize [http://www.w3.org/TR/SVG11/script.html#OnResizeEventAttribute]

	onscroll [http://www.w3.org/TR/SVG11/script.html#OnScrollEventAttribute]

	onunload [http://www.w3.org/TR/SVG11/script.html#OnUnloadEventAttribute]

	onzoom [http://www.w3.org/TR/SVG11/script.html#OnZoomEventAttribute]

Graphical Event Attributes

W3C Reference: http://www.w3.org/TR/SVG11/intro.html#TermGraphicalEventAttribute

A graphical event attribute is an event attribute that specifies script to run for
a particular user interaction event.

W3C Direct Links

	onactivate [http://www.w3.org/TR/SVG11/script.html#OnActivateEventAttribute]

	onclick [http://www.w3.org/TR/SVG11/script.html#OnClickEventAttribute]

	onfocusin [http://www.w3.org/TR/SVG11/script.html#OnFocusInEventAttribute]

	onfocusout [http://www.w3.org/TR/SVG11/script.html#OnFocusOutEventAttribute]

	onload [http://www.w3.org/TR/SVG11/script.html#OnLoadEventAttribute]

	onmousedown [http://www.w3.org/TR/SVG11/script.html#OnMouseDownEventAttribute]

	onmousemove [http://www.w3.org/TR/SVG11/script.html#OnMouseMoveEventAttribute]

	onmouseover [http://www.w3.org/TR/SVG11/script.html#OnMouseOverEventAttribute]

	onmouseout [http://www.w3.org/TR/SVG11/script.html#OnMouseOutEventAttribute]

	onmouseup [http://www.w3.org/TR/SVG11/script.html#OnMouseUpEventAttribute]

Presentation Attributes

W3C Reference: http://www.w3.org/TR/SVG11/intro.html#TermPresentationAttribute

An XML attribute on an SVG element which specifies a value for a given property for that element.

W3C Direct Links

	alignment-baseline [http://www.w3.org/TR/SVG11/text.html#AlignmentBaselineProperty]

	baseline-shift [http://www.w3.org/TR/SVG11/text.html#BaselineShiftProperty]

	clip [http://www.w3.org/TR/SVG11/text.html#ClipProperty]

	clip-path [http://www.w3.org/TR/SVG11/text.html#ClipPathProperty]

	clip-rule [http://www.w3.org/TR/SVG11/text.html#ClipRuleProperty]

	color [http://www.w3.org/TR/SVG11/text.html#ColorProperty]

	color-interpolation [http://www.w3.org/TR/SVG11/text.html#ColorInterpolationProperty]

	color-interpolation-filters [http://www.w3.org/TR/SVG11/text.html#ColorInterpolationFiltersProperty]

	color-profile [http://www.w3.org/TR/SVG11/text.html#ColorProfileProperty]

	color-rendering [http://www.w3.org/TR/SVG11/text.html#ColorRenderingProperty]

	cursor [http://www.w3.org/TR/SVG11/text.html#CursorProperty]

	direction [http://www.w3.org/TR/SVG11/text.html#DirectionProperty]

	display [http://www.w3.org/TR/SVG11/text.html#DisplayProperty]

	dominant-baseline [http://www.w3.org/TR/SVG11/text.html#DominatBaselineProperty]

	enable-background [http://www.w3.org/TR/SVG11/text.html#EnableBackgroundProperty]

	fill [http://www.w3.org/TR/SVG11/text.html#FillProperty]

	fill-opacity [http://www.w3.org/TR/SVG11/text.html#FillOpacityProperty]

	fill-rule [http://www.w3.org/TR/SVG11/text.html#FillRuleProperty]

	filter [http://www.w3.org/TR/SVG11/text.html#FilterProperty]

	flood-color [http://www.w3.org/TR/SVG11/text.html#FloodColorProperty]

	flood-opacity [http://www.w3.org/TR/SVG11/text.html#FloodOpacityProperty]

	font-family [http://www.w3.org/TR/SVG11/text.html#FontFamilyProperty]

	font-size [http://www.w3.org/TR/SVG11/text.html#FontSizeProperty]

	font-size-adjust [http://www.w3.org/TR/SVG11/text.html#FontSizeAdjustProperty]

	font-strech [http://www.w3.org/TR/SVG11/text.html#FontStrechProperty]

	font-style [http://www.w3.org/TR/SVG11/text.html#FontStyleProperty]

	font-variant [http://www.w3.org/TR/SVG11/text.html#FontVariantProperty]

	font-weight [http://www.w3.org/TR/SVG11/text.html#FontWeightProperty]

	glyph-orientation-horizontal [http://www.w3.org/TR/SVG11/text.html#GlyphOrientationHorizontalProperty]

	glyph-orientation-vertical [http://www.w3.org/TR/SVG11/text.html#GlyphOrientationVerticalProperty]

	image-rendering [http://www.w3.org/TR/SVG11/text.html#ImageRenderingProperty]

	kerning [http://www.w3.org/TR/SVG11/text.html#KerningProperty]

	letter-spacing [http://www.w3.org/TR/SVG11/text.html#LetterSpacingProperty]

	lighting-color [http://www.w3.org/TR/SVG11/text.html#LightingColorProperty]

	marker-end [http://www.w3.org/TR/SVG11/text.html#MarkerEndProperty]

	marker-mid [http://www.w3.org/TR/SVG11/text.html#MarkerMidProperty]

	marker-start [http://www.w3.org/TR/SVG11/text.html#MarkerStartProperty]

	mask [http://www.w3.org/TR/SVG11/text.html#MaskProperty]

	opacity [http://www.w3.org/TR/SVG11/text.html#OpacityProperty]

	overflow [http://www.w3.org/TR/SVG11/text.html#OverflowProperty]

	pointer-events [http://www.w3.org/TR/SVG11/text.html#PointerEventsProperty]

	shape-rendering [http://www.w3.org/TR/SVG11/text.html#ShapeRenderingProperty]

	stop-color [http://www.w3.org/TR/SVG11/text.html#StopColorProperty]

	stop-opacity [http://www.w3.org/TR/SVG11/text.html#StopOpacityProperty]

	stroke [http://www.w3.org/TR/SVG11/text.html#StrokeProperty]

	stroke-dasharray [http://www.w3.org/TR/SVG11/text.html#StrokeDasharrayProperty]

	stroke-dashoffset [http://www.w3.org/TR/SVG11/text.html#StrokeDashoffsetProperty]

	stroke-linecap [http://www.w3.org/TR/SVG11/text.html#StrokeLinecapProperty]

	stroke-linejoin [http://www.w3.org/TR/SVG11/text.html#StrokeLinejoinProperty]

	stroke-miterlimit [http://www.w3.org/TR/SVG11/text.html#StrokeMiterlimitProperty]

	stroke-opacity [http://www.w3.org/TR/SVG11/text.html#StrokeOpacityProperty]

	stroke-width [http://www.w3.org/TR/SVG11/text.html#StrokeWidthProperty]

	text-anchor [http://www.w3.org/TR/SVG11/text.html#TextAnchorProperty]

	text-decoration [http://www.w3.org/TR/SVG11/text.html#TextDecorationProperty]

	text-rendering [http://www.w3.org/TR/SVG11/text.html#TextRenderingProperty]

	unicode-bidi [http://www.w3.org/TR/SVG11/text.html#UnicodeBidiProperty]

	visibility [http://www.w3.org/TR/SVG11/text.html#VisibilityProperty]

	word-spacing [http://www.w3.org/TR/SVG11/text.html#WordSpacingProperty]

	writing-mode [http://www.w3.org/TR/SVG11/text.html#WritingModeProperty]

XLink Attributes

W3C Reference: http://www.w3.org/TR/SVG11/intro.html#TermXLinkAttributes

The XLink attributes are the seven attributes defined in the XML Linking Language
specification XLINK [http://www.w3.org/TR/SVG11/refs.html#ref-XLINK] , which
are used on various SVG elements that can reference resources. The most import
XLink attribute is xlink:href, whose definition can be found on each element
that allows it.

W3C Direct Links

	xlink:href [http://www.w3.org/TR/SVG11/linking.html#AElementXLinkHrefAttribute]

	xlink:type [http://www.w3.org/TR/SVG11/linking.html#AElementXLinkTypeAttribute]

	xlink:role [http://www.w3.org/TR/SVG11/linking.html#AElementXLinkRoleAttribute]

	xlink:arcrole [http://www.w3.org/TR/SVG11/linking.html#AElementXLinkArcRoleAttribute]

	xlink:title [http://www.w3.org/TR/SVG11/linking.html#AElementXLinkTitleAttribute]

	xlink:show [http://www.w3.org/TR/SVG11/linking.html#AElementXLinkShowAttribute]

	xlink:acutate [http://www.w3.org/TR/SVG11/linking.html#AElementXLinkAcutateAttribute]

SVG References

	W3C (en): http://www.w3.org/Graphics/SVG/

	W3C SVG 1.1 (en): http://www.w3.org/TR/SVG11/

	W3C SVG Tiny 1.2 (en): http://www.w3.org/TR/SVGMobile12/

	W3C SVGMobile (1.1 tiny und basic) (de): http://www.schumacher-netz.de/TR/2003/REC-SVGMobile-20030114-de.html

	SVG on Wikibooks (en): http://en.wikibooks.org/wiki/SVG

	SVG on Wikibooks (de): http://de.wikibooks.org/wiki/Svg

	SVG Authoring Guidelines: http://jwatt.org/svg/authoring/ by Jonathan Watt

Additional SVG Documentation

	O’Reilly commons: http://commons.oreilly.com/wiki/index.php/SVG_Essentials

	SelfSVG (de): http://www.selfsvg.info

SVG Implementation Status

	Firefox: http://www.mozilla.org/projects/svg/status.html

	Opera:

	Elements: http://www.opera.com/docs/specs/opera95/svg/elements.xml

	Attributes: http://www.opera.com/docs/specs/opera95/svg/attributes.xml

	SVG-CSS: http://www.opera.com/docs/specs/opera95/svg/cssproperties.xml

	SVG-DOM: http://www.opera.com/docs/specs/opera95/svg/dominterfaces.xml

	Webkit: http://webkit.org/projects/svg/status.xml

svgwrite module

A Python library to create SVG drawings.

SVG is a language for describing two-dimensional graphics in XML. SVG allows
for three types of graphic objects: vector graphic shapes (e.g., paths
consisting of straight lines and curves), images and text. Graphical objects
can be grouped, styled, transformed and composed into previously rendered
objects. The feature set includes nested transformations, clipping paths,
alpha masks, filter effects and template objects.

SVG drawings can be interactive and dynamic. Animations can be defined and
triggered either declarative (i.e., by embedding SVG animation elements in
SVG content) or via scripting.

See also

http://www.w3.org/TR/SVG11/intro.html#AboutSVG

a simple example:

import svgwrite

dwg = svgwrite.Drawing('test.svg', profile='tiny')
dwg.add(dwg.line((0, 0), (10, 0), stroke=svgwrite.rgb(10, 10, 16, '%')))
dwg.add(dwg.text('Test', insert=(0, 0.2)))
dwg.save()

SVG Version

You can only create two types of SVG drawings:

	SVG 1.2 Tiny Profile, use Drawing(profile= 'tiny')

	SVG 1.1 Full Profile, use Drawing(profile= 'full')

utils module

	
svgwrite.utils.rgb(r=0, g=0, b=0, mode='RGB')

	Convert r, g, b values to a string.

	Parameters

	
	r – red part

	g – green part

	b – blue part

	mode (string) – 'RGB | %'

	Return type

	string

	mode

	Description

	'RGB'

	returns a rgb-string format: 'rgb(r, g, b)'

	'%'

	returns percent-values as rgb-string format: 'rgb(r%, g%, b%)'

	
svgwrite.utils.iterflatlist(values)

	Flatten nested values, returns an iterator.

	
svgwrite.utils.strlist(values, seperator=', ')

	Concatenate values with sepertator, None values will be excluded.

	Parameters

	values – iterable object

	Returns

	string

	
svgwrite.utils.get_unit(coordinate)

	Get the unit identifier of coordinate, if coordinate has a valid
unit identifier appended, else returns None.

	
svgwrite.utils.split_coordinate(coordinate)

	Split coordinate into <number> and ‘unit` identifier.

	Returns

	<2-tuple> (number, unit-identifier) or (number, None) if no unit-identifier
is present or coordinate is an int or float.

	
svgwrite.utils.split_angle(angle)

	Split angle into <number> and <angle> identifier.

	Returns

	<2-tuple> (number, angle-identifier) or (number, None) if no angle-identifier
is present or angle is an int or float.

	
svgwrite.utils.rect_top_left_corner(insert, size, pos='top-left')

	Calculate top-left corner of a rectangle.

insert and size must have the same units.

	Parameters

	
	insert (2-tuple) – insert point

	size (2-tuple) – (width, height)

	pos (string) – insert position 'vert-horiz'

	Returns

	'top-left' corner of the rect

	Return type

	2-tuple

	pos

	valid values

	vert

	'top | middle | bottom'

	horiz

	'left'|'center'|'right'

	
svgwrite.utils.pretty_xml(xml_string, indent=2)

	Create human readable XML string.

	Parameters

	xml_string – input xml string without line breaks and indentation

	Indent int

	how much to indent, by default 2 spaces

	Returns

	xml_string with linebreaks and indentation

BaseElement

	
class svgwrite.base.BaseElement(**extra)

	The BaseElement is the root for all SVG elements. The SVG attributes
are stored in attribs, and the SVG subelements are stored in
elements.

	
BaseElement.__init__(**extra)

	
	Parameters

	extra – extra SVG attributes (keyword arguments)

	add trailing ‘_’ to reserved keywords: 'class_', 'from_'

	replace inner ‘-’ by ‘_’: 'stroke_width'

SVG attribute names will be checked, if debug is True.

workaround for removed attribs parameter in Version 0.2.2:

replace
element = BaseElement(attribs=adict)

#by
element = BaseElement()
element.update(adict)

Attributes

	
BaseElement.attribs

	dict of SVG attributes

	
BaseElement.elements

	list of SVG subelements

Methods

	
BaseElement.add(element)

	Add an SVG element as subelement.

	Parameters

	element – append this SVG element

	Returns

	the added element

	
BaseElement.tostring()

	Get the XML representation as unicode string.

	Returns

	unicode XML string of this object and all its subelements

	
BaseElement.get_xml()

	Get the XML representation as ElementTree object.

	Returns

	XML ElementTree of this object and all its subelements

	
BaseElement.get_id()

	Get the object id string, if the object does not have an id,
a new id will be created.

	Returns

	string

	
BaseElement.get_iri()

	Get the IRI reference string of the object. (i.e., '#id').

	Returns

	string

	
BaseElement.get_funciri()

	Get the FuncIRI reference string of the object. (i.e. 'url(#id)').

	Returns

	string

	
BaseElement.update(attribs)

	Update SVG Attributes from dict attribs.

Rules for keys:

	trailing ‘_’ will be removed ('class_' -> 'class')

	inner ‘_’ will be replaced by ‘-’ ('stroke_width' -> 'stroke-width')

	
BaseElement.__getitem__(key)

	Get SVG attribute by key.

	Parameters

	key (string) – SVG attribute name

	Returns

	SVG attribute value

	
BaseElement.__setitem__(key, value)

	Set SVG attribute by key to value.

	Parameters

	
	key (string) – SVG attribute name

	value (object) – SVG attribute value

	
BaseElement.set_desc(title=None, desc=None)

	Insert a title and/or a desc element as first subelement.

	
BaseElement.set_metadata(xmldata)

	
	Parameters

	xmldata – an xml.etree.ElementTree - Element() object.

set/get SVG attributes:

element['attribute'] = value
value = element['attribute']

attribs = {
 'class' = 'css-class',
 'stroke' = 'black',
}
element.update(attribs)

Common SVG Attributes

	Core Attributes

	Conditional Processing Attributes

	Document Event Attributes

	Graphical Event Attributes

	Presentation Attributes

	XLink Attributes

Drawing

The Drawing object is the overall container for all SVG
elements. It provides the methods to store the drawing into a file or a
file-like object. If you want to use stylesheets, the reference links
to this stylesheets were also stored (add_stylesheet)
in the Drawing object.

set/get SVG attributes:

element['attribute'] = value
value = element['attribute']

The Drawing object also includes a defs section, add elements to the defs
section by:

drawing.defs.add(element)

	
class svgwrite.drawing.Drawing(filename='noname.svg', size=('100%', '100%'), **extra)

	This is the SVG drawing represented by the top level svg element.

A drawing consists of any number of SVG elements contained within the drawing
element, stored in the elements attribute.

A drawing can range from an empty drawing (i.e., no content inside of the drawing),
to a very simple drawing containing a single SVG element such as a rect,
to a complex, deeply nested collection of container elements and graphics elements.

	
Drawing.__init__(filename='noname.svg', size=('100%', '100%'), **extra)

	
	Parameters

	
	filename (string) – filesystem filename valid for open()

	size (2-tuple) – width, height

	extra (keywords) – additional svg-attributes for the SVG object

Important (and not SVG Attributes) extra parameters:

	Parameters

	
	profile (string) – 'tiny | full' - define the SVG baseProfile

	debug (bool) – switch validation on/off

Attributes

	
Drawing.filename

	string should be valid for open().

	
Drawing.defs

	SVG defs section - as Defs object.

Methods

	
Drawing.add(element)

	Add an SVG element as subelement.

	Parameters

	element – append this SVG element

	Returns

	the added element

	
Drawing.write(fileobj, pretty=False, indent=2)

	Write XML string to fileobj.

	Parameters

	
	fileobj – a file-like object

	pretty – True for easy readable output

	indent – how much to indent if pretty is enabled, by default 2 spaces

Python 3.x - set encoding at the open command:

open('filename', 'w', encoding='utf-8')

	
Drawing.save(pretty=False, indent=2)

	Write the XML string to self.filename.

	Parameters

	
	pretty – True for easy readable output

	indent – how much to indent if pretty is enabled, by default 2 spaces

	
Drawing.saveas(filename, pretty=False, indent=2)

	Write the XML string to filename.

	Parameters

	
	filename (string) – filesystem filename valid for open()

	pretty – True for easy readable output

	indent – how much to indent if pretty is enabled, by default 2 spaces

	
Drawing.add_stylesheet(href, title, alternate='no', media='screen')

	Add a stylesheet reference.

	Parameters

	
	href (string) – link to stylesheet <URI>

	title (string) – name of stylesheet

	alternate (string) – 'yes'|'no'

	media (string) – 'all | aureal | braille | embossed | handheld | print | projection | screen | tty | tv'

	
Drawing.get_xml()

	Get the XML representation as ElementTree object.

	Returns

	XML ElementTree of this object and all its subelements

	
Drawing.tostring()

	Get the XML representation as unicode string. If you embed the SVG object
into a XHTML page, you have to link to the CSS files (if you use CSS classes)
in the header section of the surrounding XHTML page.

	Returns

	unicode XML string of this object and all its subelements

Factory Methods

	
Drawing.line(start=(0, 0), end=(0, 0), **extra)

	Create a svgwrite.shapes.Line object.

	
Drawing.rect(insert=(0, 0), size=(1, 1), rx=None, ry=None, **extra)

	Create a svgwrite.shapes.Rect object.

	
Drawing.circle(center=(0, 0), r=1, **extra)

	Create a svgwrite.shapes.Circle object.

	
Drawing.ellipse(center=(0, 0), r=(1, 1), **extra)

	Create a svgwrite.shapes.Ellipse object.

	
Drawing.polyline(points=[], **extra)

	Create a svgwrite.shapes.Polyline object.

	
Drawing.polygon(points=[], **extra)

	Create a svgwrite.shapes.Polygon object.

	
Drawing.text(text, insert=None, x=[], y=[], dx=[], dy=[], rotate=[], **extra)

	Create a svgwrite.text.Text object.

	
Drawing.tspan(text, insert=None, x=[], y=[], dx=[], dy=[], rotate=[], **extra)

	Create a svgwrite.text.TSpan object.

	
Drawing.tref(element, **extra)

	Create a svgwrite.text.TRef object.

	
Drawing.textPath(path, text, startOffset=None, method='align', spacing='exact', **extra)

	Create a svgwrite.text.TextPath object.

	
Drawing.textArea(text=None, insert=None, size=None, **extra)

	Create a svgwrite.text.TextArea object.

	
Drawing.path(d=None, **extra)

	Create a svgwrite.path.Path object.

	
Drawing.image(href, insert=None, size=None, **extra)

	Create a svgwrite.image.Image object.

	
Drawing.g(**extra)

	Create a svgwrite.container.Group object.

	
Drawing.symbol(**extra)

	Create a svgwrite.container.Symbol object.

	
Drawing.svg(insert=None, size=None, **extra)

	Create a svgwrite.container.SVG object.

	
Drawing.use(href, insert=None, size=None, **extra)

	Create a svgwrite.container.Use object.

	
Drawing.a(href, target='_blank', **extra)

	Create a svgwrite.container.Hyperlink object.

	
Drawing.marker(insert=None, size=None, orient=None, **extra)

	Create a svgwrite.container.Marker object.

	
Drawing.script(href=None, content='', **extra)

	Create a svgwrite.container.Script object.

	
Drawing.style(content='', **extra)

	Create a svgwrite.container.Style object.

	
Drawing.linearGradient(start=None, end=None, inherit=None, **extra)

	Create a svgwrite.gradients.LinearGradient object.

	
Drawing.radialGradient(center=None, r=None, focal=None, inherit=None, **extra)

	Create a svgwrite.gradients.RadialGradient object.

	
Drawing.mask(start=None, size=None, **extra)

	Create a svgwrite.masking.Mask object.

	
Drawing.clipPath(**extra)

	Create a svgwrite.masking.ClipPath object.

	
Drawing.set(element=None, **extra)

	Create a svgwrite.animate.Set object.

	
Drawing.animate(element=None, **extra)

	Create a svgwrite.animate.Animate object.

	
Drawing.animateColor(element=None, **extra)

	Create a svgwrite.animate.AnimateColor object.

	
Drawing.animateMotion(element=None, **extra)

	Create a svgwrite.animate.AnimateMotion object.

	
Drawing.animateTransform(transform, element=None, **extra)

	Create a svgwrite.animate.AnimateTransform object.

	
Drawing.filter(start=None, size=None, resolution=None, inherit=None, **extra)

	Create a svgwrite.filters.Filter object. (Filter Primitives are created
by factory-methods of the class Filter)

Parent Classes

	svgwrite.base.BaseElement

	svgwrite.container.Symbol

	svgwrite.container.SVG

	svgwrite.mixins.Transform

	svgwrite.mixins.ViewBox

	svgwrite.mixins.Presentation

	svgwrite.mixins.Clipping

	svgwrite.elementfactory.ElementFactory

SVG

	
class svgwrite.container.SVG(insert=None, size=None, **extra)

	A SVG document fragment consists of any number of SVG elements contained
within an svg element.

An SVG document fragment can range from an empty fragment (i.e., no content
inside of the svg element), to a very simple SVG document fragment containing
a single SVG graphics element such as a rect, to a complex, deeply nested
collection of container elements and graphics elements.

See also

http://www.w3.org/TR/SVG11/struct.html#SVGElement

	
SVG.__init__(insert=None, size=None, **extra)

	
	Parameters

	
	insert (2-tuple) – insert position (x, y)

	size (2-tuple) – (width, height)

	extra – additional SVG attributes as keyword-arguments

	
SVG.embed_stylesheet(content)

	Add <style> tag to the defs section.

	Parameters

	content – style sheet content as string

	Returns

	Style object

	
SVG.embed_font(name, filename)

	Embed font as base64 encoded data from font file.

	Parameters

	
	name – font name

	filename – file name of local stored font

	
SVG.embed_google_web_font(name, uri)

	Embed font as base64 encoded data acquired from google fonts.

	Parameters

	
	name – font name

	uri – google fonts request uri like ‘http://fonts.googleapis.com/css?family=Indie+Flower’

Attributes

	
SVG.defs

	Defs container for referenced elements

adding SVG elements to defs:

svgobject.defs.add(element)

Parent Classes

	svgwrite.base.BaseElement

	svgwrite.container.Symbol

	svgwrite.container.SVG

	svgwrite.mixins.Transform

	svgwrite.mixins.ViewBox

	svgwrite.mixins.Presentation

SVG Attributes

	class – string

assigns one or more css-class-names to an element

	style – string

allows per-element css-style rules to be specified directly on a given
element

	externalResourcesRequired – bool

False: if document rendering can proceed even if external resources are
unavailable else: True

	transform – use svgwrite.mixins.Transform interface

	x – <coordinate> – insert parameter

(Has no meaning or effect on Drawing .)

The x-axis coordinate of one corner of the rectangular region into which an
embedded svg element is placed.

Default is '0'.

	y – <coordinate> – insert parameter

(Has no meaning or effect on Drawing .)

The y-axis coordinate of one corner of the rectangular region into which an
embedded svg element is placed.

Default is '0'.

	width – <length> – size parameter

For outermost svg elements (Drawing), the
intrinsic width of the SVG document fragment. For embedded svg elements,
the width of the rectangular region into which the svg element is placed.

A negative value is an error. A value of zero disables rendering of the element.

Default is '100%'.

	height – <length> – size parameter

For outermost svg elements (Drawing), the
intrinsic height of the SVG document fragment. For embedded svg elements,
the height of the rectangular region into which the svg element is placed.

A negative value is an error. A value of zero disables rendering of the element.

Default is '100%'.

	viewBox – svgwrite.mixins.ViewBox interface

	preserveAspectRatio – svgwrite.mixins.ViewBox interface

	zoomAndPan – 'disable | magnify'

Default is 'magnify'.

Note

do not set or change following SVG attributes:
version, baseProfile, contentScriptType, contentStyleType

Standard SVG Attributes

	Core Attributes

	Conditional Processing Attributes

	Document Event Attributes

	Graphical Event Attributes

	Presentation Attributes

Group

	
class svgwrite.container.Group(**extra)

	The Group (SVG g) element is a container element for grouping
together related graphics elements.

Grouping constructs, when used in conjunction with the desc and title
elements, provide information about document structure and semantics.
Documents that are rich in structure may be rendered graphically, as speech,
or as braille, and thus promote accessibility.

A group of elements, as well as individual objects, can be given a name using
the id attribute. Named groups are needed for several purposes such as
animation and re-usable objects.

See also

http://www.w3.org/TR/SVG11/struct.html#GElement

Parent Classes

	svgwrite.base.BaseElement

	svgwrite.mixins.Transform

	svgwrite.mixins.Presentation

SVG Attributes

	class – string

assigns one or more css-class-names to an element

	style – string

allows per-element css-style rules to be specified directly on a given
element

	externalResourcesRequired – bool

False: if document rendering can proceed even if external resources are
unavailable else: True

	transform – use svgwrite.mixins.Transform interface

Standard SVG Attributes

	Core Attributes

	Conditional Processing Attributes

	Graphical Event Attributes

	Presentation Attributes

Defs

	
class svgwrite.container.Defs(**extra)

	The defs element is a container element for referenced elements. For
understandability and accessibility reasons, it is recommended that, whenever
possible, referenced elements be defined inside of a defs.

See also

http://www.w3.org/TR/SVG11/struct.html#DefsElement

Parent Classes

	svgwrite.base.BaseElement

	svgwrite.container.Group

	svgwrite.mixins.Transform

	svgwrite.mixins.Presentation

SVG Attributes

	class – string

assigns one or more css-class-names to an element

	style – string

allows per-element css-style rules to be specified directly on a given
element

	externalResourcesRequired – bool

False: if document rendering can proceed even if external resources are
unavailable else: True

	transform – use svgwrite.mixins.Transform interface

Standard SVG Attributes

	Core Attributes

	Conditional Processing Attributes

	Graphical Event Attributes

	Presentation Attributes

Symbol

	
class svgwrite.container.Symbol(**extra)

	The symbol element is used to define graphical template objects which
can be instantiated by a use element. The use of symbol elements for
graphics that are used multiple times in the same document adds structure and
semantics. Documents that are rich in structure may be rendered graphically,
as speech, or as braille, and thus promote accessibility.

See also

http://www.w3.org/TR/SVG11/struct.html#SymbolElement

Parent Classes

	svgwrite.base.BaseElement

	svgwrite.mixins.ViewBox

	svgwrite.mixins.Presentation

	svgwrite.mixins.Clipping

SVG Attributes

	class – string

assigns one or more css-class-names to an element

	style – string

allows per-element css-style rules to be specified directly on a given
element

	externalResourcesRequired – bool

False: if document rendering can proceed even if external resources are
unavailable else: True

	viewBox – use svgwrite.mixins.ViewBox interface

	preserveAspectRatio – use svgwrite.mixins.ViewBox
interface

Standard SVG Attributes

	Core Attributes

	Graphical Event Attributes

	Presentation Attributes

Marker

	
class svgwrite.container.Marker(insert=None, size=None, orient=None, **extra)

	The marker element defines the graphics that is to be used for
drawing arrowheads or polymarkers on a given path, line, polyline
or polygon element.

Add Marker definitions to a defs section, preferred to the defs section
of the main drawing.

See also

http://www.w3.org/TR/SVG11/painting.html#MarkerElement

example:

dwg = svgwrite.Drawing()
create a new marker object
marker = dwg.marker(insert=(5,5), size=(10,10))

red point as marker
marker.add(dwg.circle((5, 5), r=5, fill='red'))

add marker to defs section of the drawing
dwg.defs.add(marker)

create a new line object
line = dwg.add(dwg.polyline(
 [(10, 10), (50, 20), (70, 50), (100, 30)],
 stroke='black', fill='none'))

set marker (start, mid and end markers are the same)
line.set_markers(marker)

or set markers direct as SVG Attributes 'marker-start', 'marker-mid',
'marker-end' or 'marker' if all markers are the same.
line['marker'] = marker.get_funciri()

NEW in v1.1.11
set individually markers, to just set the end marker set other markers to None or False:
line.set_markers((None, False, marker))

	
Marker.__init__(insert=None, size=None, orient=None, **extra)

	
	Parameters

	
	insert (2-tuple) – reference point (refX, refY)

	size (2-tuple) – (markerWidth, markerHeight)

	orient – 'auto' | angle

	extra – additional SVG attributes as keyword-arguments

Parent Classes

	svgwrite.base.BaseElement

	svgwrite.mixins.ViewBox

	svgwrite.mixins.Presentation

SVG Attributes

	class – string

assigns one or more css-class-names to an element

	style – string

allows per-element css-style rules to be specified directly on a given
element

	externalResourcesRequired – bool

False: if document rendering can proceed even if external resources are
unavailable else: True

	viewBox – use svgwrite.mixins.ViewBox interface

	preserveAspectRatio – use svgwrite.mixins.ViewBox
interface

	markerUnits – 'strokeWidth|userSpaceOnUse'

Defines the coordinate system for attributes markerWidth, markerHeight
and the contents of the marker.

If markerUnits – 'strokeWidth', markerWidth,
markerHeight and the contents of the marker represent values in a coordinate
system which has a single unit equal the size in user units of the current
stroke width in place for the graphic object referencing the marker.

If markerUnits – 'userSpaceOnUse', markerWidth, markerHeight and the
contents of the marker represent values in the current user coordinate
system in place for the graphic object referencing the marker (i.e., the
user coordinate system for the element referencing the marker element via
a marker, marker-start, marker-mid or marker-end property).

	refX – <coordinate> – insert parameter

The x-axis coordinate of the reference point which is to be aligned exactly
at the marker position. The coordinate is defined in the coordinate system
after application of the viewBox and preserveAspectRatio attributes.
(default = “0”)

	refY – <coordinate> – insert parameter

The y-axis coordinate of the reference point which is to be aligned exactly
at the marker position. The coordinate is defined in the coordinate system
after application of the viewBox and preserveAspectRatio attributes.
(default = “0”)

	markerWidth – <length> – size parameter

Represents the width of the viewport into which the marker is to be fitted
when it is rendered. (default = “3”)

	markerHeight – <length> – size parameter

Represents the height of the viewport into which the marker is to be fitted
when it is rendered. A value of zero disables rendering of the element.
(default = “3”)

	orient – 'auto' | <angle> – orient parameter

Indicates how the marker is rotated. (SVG default = “0”, but for __init__()
'auto' is the default value)

See also

http://www.w3.org/TR/SVG11/painting.html#OrientAttribute

Standard SVG Attributes

	Core Attributes

	Presentation Attributes

Use

	
class svgwrite.container.Use(href, insert=None, size=None, **extra)

	The use element references another element and indicates that the graphical
contents of that element is included/drawn at that given point in the document.

Link to objects by href = '#object-id' or use the object itself as
href-argument, if the given element has no id attribute it gets an
automatic generated id.

See also

http://www.w3.org/TR/SVG11/struct.html#UseElement

	
Use.__init__(href, insert=None, size=None, **extra)

	
	Parameters

	
	href (string) – object link (id-string) or an object with an id-attribute

	insert (2-tuple) – insert point (x, y)

	size (2-tuple) – (width, height)

	extra – additional SVG attributes as keyword-arguments

Parent Classes

	svgwrite.base.BaseElement

	svgwrite.mixins.Transform

	svgwrite.mixins.XLink

	svgwrite.mixins.Presentation

SVG Attributes

	class – string

assigns one or more css-class-names to an element

	style – string

allows per-element css-style rules to be specified directly on a given
element

	externalResourcesRequired – bool

False: if document rendering can proceed even if external resources are
unavailable else: True

	x – <coordinate> – insert parameter

The x-axis coordinate of one corner of the rectangular region into which
the referenced element is placed.

Default is '0'.

	y – <coordinate> – insert parameter

The y-axis coordinate of one corner of the rectangular region into which the
referenced element is placed.

Default is '0'.

	width – <length> – size parameter

The width of the rectangular region into which the referenced element is
placed. A negative value is an error. A value of zero disables rendering
of this element.

Default is '100%'.

	height – <length> – size parameter

The height of the rectangular region into which the referenced element is
placed. A negative value is an error. A value of zero disables rendering
of this element.

Default is '100%'.

	transform – svgwrite.mixins.Transform interface

	xlink:href – string – href parameter

set on __init__(href)

Standard SVG Attributes

	Core Attributes

	Conditional Processing Attributes

	Graphical Event Attributes

	Presentation Attributes

	XLink Attributes

Hyperlink

The Hyperlink class represents the SVG a element.

	
class svgwrite.container.Hyperlink(href, target='_blank', **extra)

	The a element indicate links (also known as Hyperlinks or Web links).

The remote resource (the destination for the link) is defined by a <URI>
specified by the XLink xlink:href attribute. The remote resource may be
any Web resource (e.g., an image, a video clip, a sound bite, a program,
another SVG document, an HTML document, an element within the current
document, an element within a different document, etc.). By activating
these links (by clicking with the mouse, through keyboard input, voice
commands, etc.), users may visit these resources.

A Hyperlink is defined for each separate rendered element
contained within the Hyperlink class; add sublements as usual with
the add method.

See also

http://www.w3.org/TR/SVG11/linking.html#AElement

	
Hyperlink.__init__(href, target='_blank', **extra)

	
	Parameters

	
	href (string) – hyperlink to the target resource

	target (string) – '_blank|_replace|_self|_parent|_top|<XML-name>'

	extra – additional SVG attributes as keyword-arguments

Parent Classes

	svgwrite.base.BaseElement

	svgwrite.mixins.Transform

	svgwrite.mixins.Presentation

SVG Attributes

	class – string

assigns one or more css-class-names to an element

	style – string

allows per-element css-style rules to be specified directly on a given
element

	externalResourcesRequired – bool

False: if document rendering can proceed even if external resources are
unavailable else: True

	transform – use svgwrite.mixins.Transform interface

	xlink:href – string – href parameter

	xlink:show – 'new|replace'

use the target attribute

	xlink:acuate – 'onRequest'

This attribute provides documentation to XLink-aware processors that an
application should traverse from the starting resource to the ending
resource only on a post-loading event triggered for the purpose of traversal.

	target – string – target parameter

This attribute specifies the name or portion of
the target window, frame, pane, tab, or other relevant presentation
context (e.g., an HTML or XHTML frame, iframe, or object element)
into which a document is to be opened when the link is activated.

	_replace: The current SVG image is replaced by the linked
content in the same rectangular area in the same frame as the
current SVG image.

	
	_self: The current SVG image is replaced by the linked content

	in the same frame as the current SVG image. This is the lacuna
value, if the target attribute is not specified.

	_parent: The immediate frameset parent of the SVG image is
replaced by the linked content.

	_top: The content of the full window or tab, including any
frames, is replaced by the linked content

	_blank: A new un-named window or tab is requested for the
display of the linked content. If this fails, the result is the
same as _top

	<XML-Name>: Specifies the name of the frame, pane, or other
relevant presentation context for display of the linked content.
If this already exists, it is re-used, replacing the existing
content. If it does not exist, it is created (the same as _blank,
except that it now has a name).

Standard SVG Attributes

	Core Attributes

	Conditional Processing Attributes

	Graphical Event Attributes

	Presentation Attributes

	XLink Attributes

Script

The script element indicate links to a client-side language.

	
class svgwrite.container.Script(href=None, content='', **extra)

	The script element indicate links to a client-side language. This
is normally a (also known as Hyperlinks or Web links).

The remote resource (the source of the script) is defined by a <URI>
specified by the XLink xlink:href attribute. The remote resource must
be a text-file that contains the script contents. This script can be used
within the SVG file by catching events or adding the mouseover/mousedown/
mouseup elements to the markup.

See also

http://www.w3.org/TR/SVG/script.html

	
Script.__init__(href=None, content='', **extra)

	
	Parameters

	
	href (string) – hyperlink to the target resource or None if using content

	content (string) – script content

	extra – additional attributes as keyword-arguments

Use href or content, but not both at the same time.

	
Script.append(content)

	Append content to the existing element-content.

Best place for the script element is the defs attribute of the
Drawing class:

drawing.defs.add(drawing.script('script-content'))

Parent Classes

	svgwrite.base.BaseElement

SVG Attributes

	type – string

Identifies the scripting language for the given script element. The value
content-type specifies a media type, per MIME. If a type is not provided,
the value of contentScriptType on the svg element shall be used,
which in turn defaults to 'application/ecmascript'. If a script element
falls outside of the outermost svg element and the type is not provided,
the type must default to 'application/ecmascript'

	externalResourcesRequired – bool

False: if document rendering can proceed even if external resources are
unavailable else: True

	xlink:href – string – href parameter

	xlink:show – 'new|replace'

	xlink:acuate – 'onRequest'

This attribute provides documentation to XLink-aware processors that an
application should traverse from the starting resource to the ending
resource only on a post-loading event triggered for the purpose of traversal.

Standard SVG Attributes

	Core Attributes

	Conditional Processing Attributes

	Graphical Event Attributes

	Presentation Attributes

	XLink Attributes

Style

Internal Stylesheets

	
class svgwrite.container.Style(content='', **extra)

	The style element allows style sheets to be embedded directly within
SVG content. SVG’s style element has the same attributes as the
corresponding element in HTML.

See also

http://www.w3.org/TR/SVG/styling.html#StyleElement

	
Style.__init__(content='', **extra)

	
	Parameters

	content (string) – stylesheet content

	
Style.append(content)

	Append content to the existing element-content.

Best place for the style element is the defs attribute of the
Drawing class:

drawing.defs.add(drawing.style('stylesheet-content'))

Parent Classes

	svgwrite.base.BaseElement

SVG Attributes

	type – string

default is 'text/css'

	title – string

(For compatibility with HTML 4.) This attribute specifies an advisory
title for the ‘style’ element.

	media – string

This attribute specifies the intended destination medium for style information.
It may be a single media descriptor or a comma-separated list.
The default value for this attribute is 'all'.

Standard SVG Attributes

	Core Attributes

	Conditional Processing Attributes

	Graphical Event Attributes

	Presentation Attributes

	XLink Attributes

Path

	
class svgwrite.path.Path(d=None, **extra)

	The <path> element represent the outline of a shape which can be filled,
stroked, used as a clipping path, or any combination of the three.

See also

http://www.w3.org/TR/SVG11/paths.html#PathElement

	
Path.__init__(d=None, **extra)

	
	Parameters

	
	d (iterable) – coordinates, length and commands

	attribs (dict) – additional SVG attributes

	extra – additional SVG attributes as keyword-arguments

Attributes

	
commands

	list – the command and coordinate stack

Methods

	
Path.push(*elements)

	Push commands and coordinates onto the command stack.

	Parameters

	elements (iterable) – coordinates, length and commands

	
Path.push_arc(target, rotation, r, large_arc=True, angle_dir='+', absolute=False)

	Helper function for the elliptical-arc command.

see SVG-Reference: http://www.w3.org/TR/SVG11/paths.html#PathData

	Parameters

	
	target (2-tuple) – coordinate of the arc end point

	rotation (number) – x-axis-rotation of the ellipse in degrees

	r (number|2-tuple) – radii rx, ry when r is a 2-tuple or rx=ry=r if r is a number

	large_arc (bool) – draw the arc sweep of greater than or equal to 180 degrees (large-arc-flag)

	angle_dir – '+|-' '+' means the arc will be drawn in a “positive-angle” direction (sweep-flag)

	absolute (bool) – indicates that target coordinates are absolute else they are relative to the current point

Parent Classes

	svgwrite.base.BaseElement

	svgwrite.mixins.Transform

	svgwrite.mixins.Presentation

	svgwrite.mixins.Markers

Path Commands

See also

http://www.w3.org/TR/SVG11/paths.html#PathData

Uppercase commands indicates absolute coordinates, lowercase commands
indicates relative coordinates

	horizontal-line ‘h’, ‘H’ x+

Draws a horizontal line from the current point (cpx, cpy) to (x, cpy).

	vertical-line ‘v’, ‘V’ y+

Draws a vertical line from the current point (cpx, cpy) to (cpx, y).

	line ‘l’, ‘L’ (x y)+

Draw a line from the current point to the given (x,y) coordinate.

	moveto ‘m’, ‘M’ (x y)+

Start a new sub-path at the given (x,y) coordinate.
If a moveto is followed by multiple pairs of coordinates, the subsequent
pairs are treated as implicit lineto commands. Hence, implicit lineto
commands will be relative if the moveto is relative, and absolute if the
moveto is absolute. If a relative moveto (m) appears as the first element
of the path, then it is treated as a pair of absolute coordinates.
In this case, subsequent pairs of coordinates are treated as relative even
though the initial moveto is interpreted as an absolute moveto.

	cubic-bezier-curve ‘c’, ‘C’ (x1 y1 x2 y2 x y)+

Draws a cubic Bézier curve from the current point
to (x,y) using (x1,y1) as the control point at the beginning of the curve
and (x2,y2) as the control point at the end of the curve.

	smooth-cubic-bezier-curve ‘s’, ‘S’ (x2 y2 x y)+

Draws a cubic Bézier curve from the current point to
(x,y). The first control point is assumed to be the reflection of the second
control point on the previous command relative to the current point. (If
there is no previous command or if the previous command was not an C, c,
S or s, assume the first control point is coincident with the current point.)
(x2,y2) is the second control point (i.e., the control point at the end of
the curve).

	quadratic-bezier-curve ‘q’, ‘Q’ (x1 y1 x y)+

Draws a quadratic Bézier curve from the current point
to (x,y) using (x1,y1) as the control point.

	smooth-quadratic-bezier-curve ‘t’, ‘T’ (x y)+

Draws a quadratic Bézier curve from the current point to (x,y).
The control point is assumed to be the reflection of the control point on
the previous command relative to the current point. (If there is no previous
command or if the previous command was not a Q, q, T or t, assume the control
point is coincident with the current point.)

	elliptical-arc ‘a’, ‘A’ (rx ry x-axis-rotation large-arc-flag sweep-flag x y)+

Draws an elliptical arc from the current point to (x, y). The size and orientation
of the ellipse are defined by two radii (rx, ry) and an x-axis-rotation,
which indicates how the ellipse as a whole is rotated relative to the
current coordinate system. The center (cx, cy) of the ellipse is
calculated automatically to satisfy the constraints imposed by the other
parameters. large-arc-flag and sweep-flag contribute to the automatic
calculations and help determine how the arc is drawn.

	‘z’, ‘Z’

close current subpath

SVG Attributes

	class – string

assigns one or more css-class-names to an element

	style – string

allows per-element css-style rules to be specified directly on a given element

	externalResourcesRequired – bool

False: if document rendering can proceed
even if external resources are unavailable else: True

	transform – use svgwrite.mixins.Transform methods

	pathLength – <number>

the pathLength attribute can be used to provide the author’s
computation of the total length of the path so that the user agent can
scale distance-along-a-path computations by the ratio of ‘pathLength’ to
the user agent’s own computed value for total path length.
A “moveto” operation within a ‘path’ element is defined to have zero length.

	d – string

The definition of the outline of a shape, use push-method to add commands
and coordinates

Standard SVG Attributes

	Core Attributes

	Conditional Processing Attributes

	Graphical Event Attributes

	Presentation Attributes

Line

	
class svgwrite.shapes.Line(start=(0, 0), end=(0, 0), **extra)

	The line element defines a line segment that starts at one point
and ends at another.

See also

http://www.w3.org/TR/SVG11/shapes.html#LineElement

	
Line.__init__(start=(0, 0), end=(0, 0), **extra)

	
	Parameters

	
	start (2-tuple) – start point (x1, y1)

	end (2-tuple) – end point (x2, y2)

	extra – additional SVG attributes as keyword-arguments

SVG Attributes

	x1 – <coordinate> – start parameter

	y1 – <coordinate> – start parameter

	x2 – <coordinate> – end parameter

	y2 – <coordinate> – end parameter

Common SVG Attributes

These are the common SVG Attributes for Line, Rect, Circle, Ellipse,
Poliyline and Polygon.

	class – string

assigns one or more css-class-names to an element

	style – string

allows per-element css-style rules to be specified directly on a given
element

	externalResourcesRequired – bool

False: if document rendering can proceed even if external resources are
unavailable else: True

	transform – use svgwrite.mixins.Transform interface

Common Standard SVG Attributes

These are the common Standard SVG Attributes for Line, Rect, Circle, Ellipse,
Poliyline and Polygon.

	Core Attributes

	Conditional Processing Attributes

	Graphical Event Attributes

	Presentation Attributes

Parent Classes

	svgwrite.base.BaseElement

	svgwrite.mixins.Transform

	svgwrite.mixins.Presentation

	svgwrite.mixins.Markers

Rect

	
class svgwrite.shapes.Rect(insert=(0, 0), size=(1, 1), rx=None, ry=None, **extra)

	The rect element defines a rectangle which is axis-aligned with the current
user coordinate system. Rounded rectangles can be achieved by setting appropriate
values for attributes rx and ry.

See also

http://www.w3.org/TR/SVG11/shapes.html#RectElement

	
Rect.__init__(insert=(0, 0), size=(1, 1), rx=None, ry=None, **extra)

	
	Parameters

	
	insert (2-tuple) – insert point (x, y), left-upper point

	size (2-tuple) – (width, height)

	rx (<length>) – corner x-radius

	ry (<length>) – corner y-radius

	extra – additional SVG attributes as keyword-arguments

SVG Attributes

	x – <coordinate> – insert parameter

The x-axis coordinate of the side of the
rectangle which has the smaller x-axis coordinate value

	y – <coordinate> – insert parameter

The y-axis coordinate of the side of the
rectangle which has the smaller y-axis coordinate value

	width – <length> – size parameter

	height – <length> – size parameter

	rx – <length> – rx parameter

For rounded rectangles, the y-axis radius of the
ellipse used to round off the corners of the rectangle.

	ry – <length> – ry parameter

For rounded rectangles, the y-axis radius of the
ellipse used to round off the corners of the rectangle.

Parent Classes

	svgwrite.base.BaseElement

	svgwrite.mixins.Transform

	svgwrite.mixins.Presentation

Circle

	
class svgwrite.shapes.Circle(center=(0, 0), r=1, **extra)

	The circle element defines a circle based on a center point and a radius.

See also

http://www.w3.org/TR/SVG11/shapes.html#CircleElement

	
Circle.__init__(center=(0, 0), r=1, **extra)

	
	Parameters

	
	center (2-tuple) – circle center point (cx, cy)

	r (length) – circle-radius r

	extra – additional SVG attributes as keyword-arguments

SVG Attributes

	cx – <coordinate> – center parameter

The x-axis coordinate of the center of the circle.

	cy – <coordinate> – center parameter

The y-axis coordinate of the center of the circle.

	r – <length> – r parameter

The radius of the circle.

Parent Classes

	svgwrite.base.BaseElement

	svgwrite.mixins.Transform

	svgwrite.mixins.Presentation

Ellipse

	
class svgwrite.shapes.Ellipse(center=(0, 0), r=(1, 1), **extra)

	The ellipse element defines an ellipse which is axis-aligned with the
current user coordinate system based on a center point and two radii.

See also

http://www.w3.org/TR/SVG11/shapes.html#EllipseElement

	
Ellipse.__init__(center=(0, 0), r=(1, 1), **extra)

	
	Parameters

	
	center (2-tuple) – ellipse center point (cx, cy)

	r (2-tuple) – ellipse radii (rx, ry)

	extra – additional SVG attributes as keyword-arguments

SVG Attributes

	cx – <coordinate> – center parameter

The x-axis coordinate of the center of the ellipse.

	cy – <coordinate> – center parameter

The y-axis coordinate of the center of the ellipse.

	rx – <length> – r parameter

The x-axis radius of the ellipse.

	ry – <length> – r parameter

The y-axis radius of the ellipse.

Parent Classes

	svgwrite.base.BaseElement

	svgwrite.mixins.Transform

	svgwrite.mixins.Presentation

Polyline

	
class svgwrite.shapes.Polyline(points=[], **extra)

	The polyline element defines a set of connected straight line
segments. Typically, polyline elements define open shapes.

See also

http://www.w3.org/TR/SVG11/shapes.html#PolylineElement

	
Polyline.__init__(points=[], **extra)

	
	Parameters

	
	points (iterable) – iterable of points (points are 2-tuples)

	extra – additional SVG attributes as keyword-arguments

Attributes

	
Polyline.points

	list of points, a point is a 2-tuple (x, y): x, y = <number>

SVG Attributes

	points – list of points – points parameter

The points that make up the polyline. All coordinate values are in the
user coordinate system (no units allowed).

How to append points:

Polyline.points.append(point)
Polyline.points.extend([point1, point2, point3, ...])

Parent Classes

	svgwrite.base.BaseElement

	svgwrite.mixins.Transform

	svgwrite.mixins.Presentation

	svgwrite.mixins.Markers

Polygon

	
class svgwrite.shapes.Polygon(points=[], **extra)

	The polygon element defines a closed shape consisting of a set of
connected straight line segments.

Same as Polyline but closed.

See also

http://www.w3.org/TR/SVG11/shapes.html#PolygonElement

Parent Classes

	svgwrite.base.BaseElement

	svgwrite.mixins.Transform

	svgwrite.mixins.Presentation

	svgwrite.mixins.Markers

Basic Shapes Examples

import svgwrite
from svgwrite import cm, mm

def basic_shapes(name):
 dwg = svgwrite.Drawing(filename=name, debug=True)
 hlines = dwg.add(dwg.g(id='hlines', stroke='green'))
 for y in range(20):
 hlines.add(dwg.line(start=(2*cm, (2+y)*cm), end=(18*cm, (2+y)*cm)))
 vlines = dwg.add(dwg.g(id='vline', stroke='blue'))
 for x in range(17):
 vlines.add(dwg.line(start=((2+x)*cm, 2*cm), end=((2+x)*cm, 21*cm)))
 shapes = dwg.add(dwg.g(id='shapes', fill='red'))

 # set presentation attributes at object creation as SVG-Attributes
 circle = dwg.circle(center=(15*cm, 8*cm), r='2.5cm', stroke='blue', stroke_width=3)
 circle['class'] = 'class1 class2'
 shapes.add(circle)

 # override the 'fill' attribute of the parent group 'shapes'
 shapes.add(dwg.rect(insert=(5*cm, 5*cm), size=(45*mm, 45*mm),
 fill='blue', stroke='red', stroke_width=3))

 # or set presentation attributes by helper functions of the Presentation-Mixin
 ellipse = shapes.add(dwg.ellipse(center=(10*cm, 15*cm), r=('5cm', '10mm')))
 ellipse.fill('green', opacity=0.5).stroke('black', width=5).dasharray([20, 20])
 dwg.save()

if __name__ == '__main__':
 basic_shapes('basic_shapes.svg')

basic_shapes.svg

[image: Your browser can't render SVG images.]

Image

	
class svgwrite.image.Image(href, insert=None, size=None, **extra)

	The image element indicates that the contents of a complete file are
to be rendered into a given rectangle within the current user coordinate
system. The image element can refer to raster image files such as PNG
or JPEG or to files with MIME type of “image/svg+xml”.

Methods

	
Image.__init__(href, insert=None, size=None, **extra)

	
	Parameters

	
	href (string) – hyperlink to the image resource

	insert (2-tuple) – insert point (x, y)

	size (2-tuple) – (width, height)

	attribs (dict) – additional SVG attributes

	extra – additional SVG attributes as keyword-arguments

	
Image.stretch()

	Stretch viewBox in x and y direction to fill viewport, does not
preserve aspect ratio.

	
Image.fit(horiz='center', vert='middle', scale='meet')

	Set the preserveAspectRatio attribute.

	Parameters

	
	horiz (string) – horizontal alignment 'left'|'center'|'right'

	vert (string) – vertical alignment 'top'|'middle'|'bottom'

	scale (string) – scale method 'meet'|'slice'

	Scale methods

	Description

	meet

	preserve aspect ration and zoom to limits of viewBox

	slice

	preserve aspect ration and viewBox touch viewport on all bounds, viewBox will extend beyond the bounds of the viewport

Parent Classes

	svgwrite.base.BaseElement

	svgwrite.mixins.Transform

	svgwrite.mixins.Clipping

SVG Attributes

	class – string

assigns one or more css-class-names to an element

	style – string

allows per-element css-style rules to be specified directly on a given
element

	externalResourcesRequired – bool

False: if document rendering can proceed even if external resources are
unavailable else: True

	transform – use svgwrite.mixins.Transform interface

	x – <coordinate> – insert parameter

The x-axis coordinate of one corner of the rectangular region into which
the referenced document is placed.

Default is '0'.

	y – <coordinate> – insert parameter

The y-axis coordinate of one corner of the rectangular region into which
the referenced document is placed.

Default is '0'.

	width – <length> – size parameter

The width of the rectangular region into which the referenced document is
placed. A negative value is an error. A value of zero disables rendering
of the element.

	height – <length> – size parameter

The height of the rectangular region into which the referenced document is
placed. A negative value is an error. A value of zero disables rendering of
the element.

	xlink:href – string – href parameter

A IRI reference to the image resource.

	preserveAspectRatio – '[defer] <align> [<meetOrSlice>]'

Standard SVG Attributes

	Core Attributes

	Conditional Processing Attributes

	Graphical Event Attributes

	Presentation Attributes

	XLink Attributes

Text

Text that is to be rendered as part of an SVG document fragment is specified
using the text element. The characters to be drawn are expressed as XML
character data inside the text element.

	
class svgwrite.text.Text(text, insert=None, x=None, y=None, dx=None, dy=None, rotate=None, **extra)

	The Text element defines a graphics element consisting of text.
The characters to be drawn are expressed as XML character data inside the
Text element.

See also

http://www.w3.org/TR/SVG11/text.html#TextElement

Refer to TSpan SVG Attributes

Parent Classes

	svgwrite.base.BaseElement

	svgwrite.text.TSpan

	svgwrite.mixins.Transform

	svgwrite.mixins.Presentation

TSpan

	
class svgwrite.text.TSpan(text, insert=None, x=None, y=None, dx=None, dy=None, rotate=None, **extra)

	Within a Text element, text and font properties
and the current text position can be adjusted with absolute or relative
coordinate values by using the TSpan element.
The characters to be drawn are expressed as XML character data inside the
TSpan element.

See also

http://www.w3.org/TR/SVG11/text.html#TSpanElement

	
TSpan.__init__(text, insert=None, x=None, y=None, dx=None, dy=None, rotate=None, **extra)

	
	Parameters

	
	text (string) – tspan content

	insert (2-tuple) – The insert parameter is the absolute insert point
of the text, don’t use this parameter in combination
with the x or the y parameter.

	x (list) – list of absolute x-axis values for characters

	y (list) – list of absolute y-axis values for characters

	dx (list) – list of relative x-axis values for characters

	dy (list) – list of relative y-axis values for characters

	rotate (list) – list of rotation-values for characters (in degrees)

Attributes

	
TSpan.text

	stores the text value.

Methods

	
TSpan.__init__(text, insert=None, x=None, y=None, dx=None, dy=None, rotate=None, **extra)

	
	Parameters

	
	text (string) – tspan content

	insert (2-tuple) – The insert parameter is the absolute insert point
of the text, don’t use this parameter in combination
with the x or the y parameter.

	x (list) – list of absolute x-axis values for characters

	y (list) – list of absolute y-axis values for characters

	dx (list) – list of relative x-axis values for characters

	dy (list) – list of relative y-axis values for characters

	rotate (list) – list of rotation-values for characters (in degrees)

Parent Classes

	svgwrite.base.BaseElement

	svgwrite.mixins.Presentation

SVG Attributes

	x – <coordinate+>

If a single <coordinate> is provided, then the value represents the new
absolute X coordinate for the current text position for rendering the
glyphs that correspond to the first character within this element or
any of its descendants.

If list of n <coordinates> is provided, then the values represent
new absolute X coordinates for the current text position for rendering
the glyphs corresponding to each of the first n characters within this
element or any of its descendants.

If more <coordinates> are provided than characters, then the extra
<coordinates> will have no effect on glyph positioning.

If more characters exist than <coordinates> , then for each of these
extra characters:

	if an ancestor Text or TSpan
element specifies an absolute X coordinate for the given
character via an x attribute, then that absolute X
coordinate is used as the starting X coordinate for that
character (nearest ancestor has precedence), else

	the starting X coordinate for rendering the glyphs corresponding
to the given character is the X coordinate of the resulting
current text position from the most recently rendered glyph for
the current Text element.

If the attribute is not specified:

	if an ancestor Text or TSpan
element specifies an absolute X coordinate for a given character
via an x attribute, then that absolute X coordinate is
used (nearest ancestor has precedence), else

	the starting X coordinate for rendering the glyphs corresponding
to a given character is the X coordinate of the resulting current
text position from the most recently rendered glyph for the current
Text element.

	y – <coordinate+>

The corresponding list of absolute Y coordinates for the glyphs
corresponding to the characters within this element. The processing
rules for the y attribute parallel the processing rules for
the x attribute.

	dx – <length+>

If a single <length> is provided, this value represents the new
relative X coordinate for the current text position for rendering
the glyphs corresponding to the first character within this element
or any of its descendants. The current text position is shifted
along the x-axis of the current user coordinate system by <length>
before the first character’s glyphs are rendered.

If a list of n <length> is provided, then
the values represent incremental shifts along the x-axis for the
current text position before rendering the glyphs corresponding to
the first n characters within this element or any of its descendants.
Thus, before the glyphs are rendered corresponding to each character,
the current text position resulting from drawing the glyphs for the
previous character within the current Text element
is shifted along the X axis of the current user coordinate system by
<length> .

If more <lengths> are provided than characters, then any extra
<lengths> will have no effect on glyph positioning.

If more characters exist than <length>s, then for each of these extra
characters:

	if an ancestor Text or TSpan
element specifies a relative X coordinate for the given character
via a dx attribute, then the current text position is shifted
along the x-axis of the current user coordinate system by that
amount (nearest ancestor has precedence), else

	no extra shift along the x-axis occurs.

If the attribute is not specified:

	if an ancestor Text or TSpan
element specifies a relative X coordinate for a given character
via a dx attribute, then the current text position is shifted
along the x-axis of the current user coordinate system by that
amount (nearest ancestor has precedence), else

	no extra shift along the x-axis occurs.

	dy – <length+>

The corresponding list of relative Y coordinates for the characters
within the tspan element. The processing rules for the dy attribute
parallel the processing rules for the dx attribute.

	rotate – <angle+>

The supplemental rotation about the current text position that will be
applied to all of the glyphs corresponding to each character within
this element.

If a list of <numbers> is provided, then the first <number> represents
the supplemental rotation for the glyphs corresponding to the first
character within this element or any of its descendants, the second
<number> represents the supplemental rotation for the glyphs that
correspond to the second character, and so on.

If more <numbers> are provided than there are characters, then the
extra <numbers> will be ignored.

If more characters are provided than <numbers>, then for each of these
extra characters the rotation value specified by the last number must
be used.

If the attribute is not specified and if an ancestor Text
or TSpan element specifies a supplemental rotation
for a given character via a rotate attribute, then the given
supplemental rotation is applied to the given character (nearest
ancestor has precedence). If there are more characters than <numbers>
specified in the ancestor’s rotate attribute, then for each of
these extra characters the rotation value specified by the last number
must be used.

This supplemental rotation has no impact on the rules by which current
text position is modified as glyphs get rendered and is supplemental
to any rotation due to text on a path and to glyph-orientation-horizontal
or glyph-orientation-vertical.

	class – string

assigns one or more css-class-names to an element

	style – string

allows per-element css-style rules to be specified directly on a given element

	externalResourcesRequired – bool

False: if document rendering can proceed even if external resources are
unavailable else: True

	textLength – <length>

The purpose of this attribute is to allow
the author to achieve exact alignment, in visual rendering order after
any bidirectional reordering, for the first and last rendered glyphs
that correspond to this element; thus, for the last rendered character
(in visual rendering order after any bidirectional reordering), any
supplemental inter-character spacing beyond normal glyph advances are
ignored (in most cases) when the user agent determines the appropriate
amount to expand/compress the text string to fit within a length of
textLength.

	lengthAdjust – 'spacing | spacingAndGlyphs'

Indicates the type of adjustments which the user agent shall make to make
the rendered length of the text match the value specified on the textLength
attribute.

	'spacing' indicates that only the advance values are adjusted. The
glyphs themselves are not stretched or compressed.

	'spacingAndGlyphs' indicates that the advance values are adjusted and
the glyphs themselves stretched or compressed in one axis (i.e., a
direction parallel to the inline-progression-direction).

If the attribute is not specified, the effect is as a value of spacing
were specified.

Standard SVG Attributes

	Core Attributes

	Conditional Processing Attributes

	Graphical Event Attributes

	Presentation Attributes

TRef

	
class svgwrite.text.TRef(element, **extra)

	The textual content for a Text can be either character data directly
embedded within the <text> element or the character data content of a
referenced element, where the referencing is specified with a TRef
element.

See also

http://www.w3.org/TR/SVG11/text.html#TRefElement

	
TRef.__init__(element, **extra)

	
	Parameters

	element – create a reference this element, if element is a string its the id name of the referenced element, if element is a BaseElement the id SVG Attribute is used to create the reference.

	
TRef.set_href(element)

	Create a reference to element.

	Parameters

	element – if element is a string its the id name of the
referenced element, if element is a BaseElement class the id
SVG Attribute is used to create the reference.

Parent Classes

	svgwrite.base.BaseElement

	svgwrite.mixins.XLink

	svgwrite.mixins.Presentation

SVG Attributes

	class – string

assigns one or more css-class-names to an element

	style – string

allows per-element css-style rules to be specified directly on a given element

	externalResourcesRequired – bool

False: if document rendering can proceed even if external resources are
unavailable else: True

	xlink:href – <string>
A IRI reference to an element whose character data content shall be used
as character data for this tref element.

Standard SVG Attributes

	Core Attributes

	Conditional Processing Attributes

	Graphical Event Attributes

	Presentation Attributes

TextPath

	
class svgwrite.text.TextPath(path, text, startOffset=None, method='align', spacing='exact', **extra)

	In addition to text drawn in a straight line, SVG also includes the
ability to place text along the shape of a path element. To specify that
a block of text is to be rendered along the shape of a path, include
the given text within a textPath element which includes an xlink:href
attribute with a IRI reference to a path element.

See also

http://www.w3.org/TR/SVG11/text.html#TextPathElement

Methods

	
TextPath.__init__(path, text, startOffset=None, method='align', spacing='exact', **extra)

	
	Parameters

	
	path – link to path, id string or Path object

	text (string) – textPath content

	startOffset (number) – text starts with offset from begin of path.

	method (string) – align|stretch

	spacing (string) – exact|auto

Parent Classes

	svgwrite.base.BaseElement

	svgwrite.mixins.XLink

	svgwrite.mixins.Presentation

SVG Attributes

	class – string

assigns one or more css-class-names to an element

	style – string

allows per-element css-style rules to be specified directly on a given element

	externalResourcesRequired – bool

False: if document rendering can proceed even if external resources are
unavailable else: True

	xlink:href – string

A IRI reference to an element whose character data content shall be used
as character data for this TRef element.

	startOffset – <length>

An offset from the start of the path for
the initial current text position, calculated using the user agent’s
distance along the path algorithm. Value as percentage or distance along
the path measured in the current user coordinate system.

	method – 'align | stretch'

Indicates the method by which text should be rendered along the path.

	spacing – 'auto | exact'

Indicates how the user agent should determine the spacing between glyphs
that are to be rendered along a path.

Standard SVG Attributes

	Core Attributes

	Conditional Processing Attributes

	Graphical Event Attributes

	Presentation Attributes

TextArea

	
class svgwrite.text.TextArea(text=None, insert=None, size=None, **extra)

	At this time textArea is only available for SVG 1.2 Tiny profile.

The textArea element allows simplistic wrapping of text content within a
given region. The tiny profile of SVG specifies a single rectangular region.
Other profiles may allow a sequence of arbitrary shapes.

Text wrapping via the textArea element is available as a lightweight and
convenient facility for simple text wrapping where a complete box model layout
engine is not required.

The layout of wrapped text is user agent dependent; thus, content developers
need to be aware that there might be different results, particularly with
regard to where line breaks occur.

The TextArea class wraps every text added by write() or writeline() as
tspan element.

See also

http://www.w3.org/TR/SVGMobile12/text.html#TextAreaElement

Methods

	
TextArea.write(text, **extra)

	Add text as tspan elements, with extra-params for the tspan element.

Use the ‘\n’ character for line breaks.

Parent Classes

	svgwrite.base.BaseElement

	svgwrite.mixins.Transform

	svgwrite.mixins.Presentation

SVG Attributes

	x – <coordinate>

The x-axis coordinate of one corner of the rectangular region into which
the text content will be placed. The lacuna value is '0'.

	y – <coordinate>

The y-axis coordinate of one corner of the rectangular region into which
the text content will be placed. The lacuna value is '0'.

	width – 'auto' | <coordinate>

The width of the rectangular region into which the text content will be
placed. A value of 'auto' indicates that the width of the rectangular
region is infinite. The lacuna value is 'auto'.

	height – 'auto' | <coordinate>

The height of the rectangular region into which the text content will be
placed. A value of 'auto' indicates that the height of the rectangular
region is infinite. The lacuna value is 'auto'.

	editable – 'auto`| simple'

This attribute indicates whether the text can be edited. See the definition
of the ‘editable’ attribute.

	focusable – 'true | false | auto'

	Value

	Description

	'true'

	The element is keyboard-aware and must be treated as any
other UI component that can get focus.

	'false'

	The element is not focusable.

	'auto'

	The lacuna value. Equivalent to 'false'

Exception: see http://www.w3.org/TR/SVGMobile12/interact.html#focusable-attr

	line-increment – 'auto | inherit' | <number>

The line-increment property provides limited control over the size of
each line in the block-progression-direction. This property applies to the
textArea element, and to child elements of the textArea element.
The line-increment property must not have any effect when used on an
element which is not, or does not have as an ancestor, a textArea
element.

	text-align – 'start | end | center | inherit'

Alignment in the inline progression direction in flowing text is provided
by the text-align property.

	display-align – 'auto | before | center | after | inherit'

The display-align property specifies the alignment, in the
block-progression-direction, of the text content of the textArea element.

	Value

	Description

	'auto'

	For SVG, auto is equivalent to before.

	'before'

	The before-edge of the first line is aligned with the
before-edge of the first region.

	'center'

	The lines are centered in the block-progression-direction.

	'after'

	The after-edge of the last line is aligned with the
after-edge of the last region.

Layout rules: see http://www.w3.org/TR/SVGMobile12/text.html#TextAreaElement

LinearGradient

Gradients consist of continuously smooth color transitions along a vector
from one color to another, possibly followed by additional transitions along
the same vector to other colors. SVG provides for two types of gradients:
linear gradients and radial gradients.

See also

	http://www.w3.org/TR/SVG11/pservers.html#Gradients

	http://www.w3.org/TR/SVG11/pservers.html#LinearGradients

	
class svgwrite.gradients.LinearGradient(start=None, end=None, inherit=None, **extra)

	Linear gradients are defined by a SVG <linearGradient> element.

Methods

	
LinearGradient.__init__(start=None, end=None, inherit=None, **extra)

	
	Parameters

	
	start (2-tuple) – start point of the gradient (x1, y1)

	end (2-tuple) – end point of the gradient (x2, y2)

	inherit – gradient inherits properties from inherit see: xlink:href

	
LinearGradient.add_stop_color(offset=None, color=None, opacity=None)

	Adds a stop-color to the gradient.

	Parameters

	
	offset – is either a <number> (usually ranging from 0 to 1) or
a <percentage> (usually ranging from 0% to 100%) which indicates where
the gradient stop is placed. Represents a location along the gradient
vector. For radial gradients, it represents a percentage distance from
(fx,fy) to the edge of the outermost/largest circle.

	color – indicates what color to use at that gradient stop

	opacity – defines the opacity of a given gradient stop

	
LinearGradient.get_paint_server(default='none')

	Returns the <FuncIRI> of the gradient.

SVG Attributes

	class – string

assigns one or more css-class-names to an element

	style – string

allows per-element css-style rules to be specified directly on a given element

	externalResourcesRequired – bool

False: if document rendering can proceed
even if external resources are unavailable else: True

	gradientUnits – 'userSpaceOnUse | objectBoundingBox'

Defines the coordinate system for attributes x1, y1, x2 and y2.

See also

http://www.w3.org/TR/SVG11/pservers.html#LinearGradientElementGradientUnitsAttribute

	gradientTransform – <transform-list>

Use the -svgwrite.mixins.Transform interface to set transformations.

Contains the definition of an optional additional transformation from the
gradient coordinate system onto the target coordinate system (i.e.,
userSpaceOnUse or objectBoundingBox). This allows for things such as skewing
the gradient. This additional transformation matrix is post-multiplied to
(i.e., inserted to the right of) any previously defined transformations,
including the implicit transformation necessary to convert from object
bounding box units to user space.

	x1 – <coordinate> – start parameter

x1, y1, x2 and y2 define a gradient vector for the linear
gradient. This gradient vector provides starting and ending points onto
which the gradient stops are mapped. The values of x1, y1, x2
and y2 can be either numbers or percentages.

default is '0%'

	y1 – <coordinate> – start parameter

See x1. Default is '0%'

	x2 – <coordinate> – end parameter

See x1. Default is '100%'

	y2 – <coordinate> – end parameter

See x1. Default is '0%'

	spreadMethod – 'pad | reflect | repeat'

Indicates what happens if the gradient starts or ends inside the bounds of
the target rectangle. Possible values are: 'pad', which says to use the
terminal colors of the gradient to fill the remainder of the target region,
'reflect', which says to reflect the gradient pattern start-to-end,
end-to-start, start-to-end, etc. continuously until the target rectangle is
filled, and 'repeat', which says to repeat the gradient pattern start-to-end,
start-to-end, start-to-end, etc. continuously until the target region is
filled.

default is 'pad'

	xlink:href – <iri> – inherit parameter

A URI reference to a different LinearGradient or RadialGradient
element within the current SVG document fragment. Any LinearGradient
attributes which are defined on the referenced element which are not defined
on this element are inherited by this element. If this element has no defined
gradient stops, and the referenced element does (possibly due to its own
xlink:href attribute), then this element inherits the gradient stop from
the referenced element. Inheritance can be indirect to an arbitrary level;
thus, if the referenced element inherits attribute or gradient stops due to
its own xlink:href attribute, then the current element can inherit those
attributes or gradient stops.

RadialGradient

See also

http://www.w3.org/TR/SVG11/pservers.html#RadialGradients

	
class svgwrite.gradients.RadialGradient(center=None, r=None, focal=None, inherit=None, **extra)

	Radial gradients are defined by a SVG <radialGradient> element.

Methods

	
RadialGradient.__init__(center=None, r=None, focal=None, inherit=None, **extra)

	
	Parameters

	
	center (2-tuple) – center point for the gradient (cx, cy)

	r – radius for the gradient

	focal (2-tuple) – focal point for the radial gradient (fx, fy)

	inherit – gradient inherits properties from inherit see: xlink:href

	
RadialGradient.add_stop_color(offset=None, color=None, opacity=None)

	Adds a stop-color to the gradient.

	Parameters

	
	offset – is either a <number> (usually ranging from 0 to 1) or
a <percentage> (usually ranging from 0% to 100%) which indicates where
the gradient stop is placed. Represents a location along the gradient
vector. For radial gradients, it represents a percentage distance from
(fx,fy) to the edge of the outermost/largest circle.

	color – indicates what color to use at that gradient stop

	opacity – defines the opacity of a given gradient stop

	
RadialGradient.get_paint_server(default='none')

	Returns the <FuncIRI> of the gradient.

SVG Attributes

	class – string

assigns one or more css-class-names to an element

	style – string

allows per-element css-style rules to be specified directly on a given element

	externalResourcesRequired – bool

False: if document rendering can proceed
even if external resources are unavailable else: True

	gradientUnits – 'userSpaceOnUse | objectBoundingBox'

Defines the coordinate system for attributes cx, cy, r, fx
and fy.

See also

http://www.w3.org/TR/SVG11/pservers.html#RadialGradientElementGradientUnitsAttribute

	cx – <coordinate> – center parameter

cx, cy and r define the largest (i.e., outermost) circle for
the radial gradient. The gradient will be drawn such that the 100% gradient
stop is mapped to the perimeter of this largest (i.e., outermost) circle.

default is '50%'

	cy – <coordinate> – center parameter

See cx. Default is '50%'.

	r – <length> – r parameter

See cx.

A value of zero will cause the area to be painted as a single color using
the color and opacity of the last gradient stop.

Default is '50%'.

	fx – <coordinate> – focal parameter

fx and fy define the focal point for the radial gradient. The
gradient will be drawn such that the 0% gradient stop is mapped to (fx, fy).
If attribute fx is not specified, fx will coincide with the
presentational value of cx for the element whether the value for cx
was inherited or not. If the element references an element that specifies a
value for fx, then the value of ‘fx’ is inherited from the referenced
element.

	fy – <coordinate> – focal parameter

See fx.
If attribute fy is not specified, fy will coincide with the
presentational vlaue of cy for the element whether the value for cy
was inherited or not. If the element references an element that specifies a
value for fy, then the value of fy is inherited from the referenced
element.

	gradientTransform – <transform-list>

Use the -svgwrite.mixins.Transform interface to set transformations.

See LinearGradient

	spreadMethod – 'pad | reflect | repeat'

See LinearGradient

	xlink:href – <iri> – inherit parameter

See LinearGradient

Pattern

	
class svgwrite.pattern.Pattern(insert=None, size=None, inherit=None, **extra)

	A pattern is used to fill or stroke an object using a pre-defined graphic
object which can be replicated (“tiled”) at fixed intervals in x and y to
cover the areas to be painted. Patterns are defined using a pattern element
and then referenced by properties fill and stroke on a given graphics
element to indicate that the given element shall be filled or stroked with
the referenced pattern.

See also

http://www.w3.org/TR/SVG11/pservers.html#PatternElement

Methods

	
Pattern.__init__(insert=None, size=None, inherit=None, **extra)

	
	Parameters

	
	insert (2-tuple) – base point of the pattern (x, y)

	size (2-tuple) – size of the pattern (width, height)

	inherit – pattern inherits properties from inherit see: xlink:href

	
Pattern.add()

	

Add element to the pattern content.

The contents of the pattern are relative to a new coordinate system.
If there is a viewBox attribute, then the new coordinate system is fitted
into the region defined by the x, y, width, height and
patternUnits attributes on the pattern element using the standard
rules for viewBox and preserveAspectRatio. If there is no viewBox
attribute, then the new coordinate system has its origin at (x, y), where x
is established by the x attribute on the pattern element, and y is
established by the y attribute on the ‘pattern’ element. Thus, in the
following example:

<pattern x="10" y="10" width="20" height="20">
 <rect x="5" y="5" width="10" height="10"/>
</pattern>

or as svgwrite calls:

dwg is the main svg drawing
pattern = dwg.pattern(insert=(10, 10), size=(20, 20))
pattern.add(dwg.rect(insert=(5, 5), size=(10, 10))

the rectangle has its top/left located 5 units to the right and 5 units down
from the origin of the pattern tile.

SVG Attributes

	patternUnits – 'userSpaceOnUse | objectBoundingBox'

Defines the coordinate system for attributes x, y, width and
height.

If patternUnits= 'userSpaceOnUse' , x , y, width and height
represent values in the coordinate system that results from taking the
current user coordinate system in place at the time when the pattern
element is referenced (i.e., the user coordinate system for the element
referencing the pattern element via a fill or stroke property)
and then applying the transform specified by attribute patternTransform.

If patternUnits= 'objectBoundingBox' , the user coordinate system for
attributes x, y, width and height is established using the
bounding box of the element to which the pattern is applied (see Object
bounding box units) and then applying the transform specified by attribute
patternTransform.

Default is 'objectBoundingBox'.

	patternContentUnits – 'userSpaceOnUse | objectBoundingBox'

Defines the coordinate system for the contents of the pattern. Note that
this attribute has no effect if attribute viewBox is specified.

If patternContentUnits= 'userSpaceOnUse' , the user coordinate system for
the contents of the pattern element is the coordinate system that
results from taking the current user coordinate system in place at the time
when the pattern element is referenced (i.e., the user coordinate system
for the element referencing the pattern element via a fill or
stroke property) and then applying the transform specified by attribute
patternTransform.

If patternContentUnits= 'objectBoundingBox' , the user coordinate system
for the contents of the pattern element is established using the bounding
box of the element to which the pattern is applied (see Object bounding box
units) and then applying the transform specified by attribute
patternTransform.

Default is 'userSpaceOnUse'.

	patternTransform – <transform-list>

Use the Transform interface to set transformations.

Contains the definition of an optional additional transformation from the
pattern coordinate system onto the target coordinate system (i.e.,
'userSpaceOnUse' or 'objectBoundingBox'). This allows for things
such as skewing the pattern tiles. This additional transformation matrix is
post-multiplied to (i.e., inserted to the right of) any previously defined
transformations, including the implicit transformation necessary to convert
from object bounding box units to user space.

	x – <coordinate> – insert parameter

x, y, width and height indicate how the pattern tiles are
placed and spaced. These attributes represent coordinates and values in the
coordinate space specified by the combination of attributes patternUnits
and patternTransform.

Default is '0'.

	y – <coordinate> – center parameter

See x.

Default is '0'.

	width – <length> – size parameter

See x.

A negative value is an error. A value of zero disables rendering of the
element (i.e., no paint is applied).

Default is '0'.

	height – <length> – size parameter

See x.

A negative value is an error. A value of zero disables rendering of the
element (i.e., no paint is applied).

Default is '0'.

	xlink:href – string – inherit parameter

A URI reference to a different pattern element within the current SVG
document fragment. Any attributes which are defined on the referenced
element which are not defined on this element are inherited by this element.
If this element has no children, and the referenced element does (possibly
due to its own xlink:href attribute), then this element inherits the
children from the referenced element. Inheritance can be indirect to an
arbitrary level; thus, if the referenced element inherits attributes or
children due to its own xlink:href attribute, then the current element
can inherit those attributes or children.

	preserveAspectRatio – '[defer] <align> [<meetOrSlice>]'

Use the ViewBox interface to set viewbox
and preserveAspectRatio.

SolidColor

The solidColor element is a paint server that provides a single color with opacity. It can be referenced like the
other paint servers (i.e. gradients).

	
class svgwrite.solidcolor.SolidColor(color='currentColor', opacity=None, **extra)

	The solidColor element is a paint server that provides a single color with opacity.
It can be referenced like the other paint servers (i.e. gradients).
The color parameter specifies the color that shall be used for this solidColor element.
The keyword "currentColor" can be specified in the same manner as within a <paint> specification for the fill
and stroke properties. The opacity parameter defines the opacity of the solidColor.

See also

https://www.w3.org/TR/SVGTiny12/painting.html#SolidColorElement

Methods

	
SolidColor.__init__(color='currentColor', opacity=None, **extra)

	
	Parameters

	
	color – solid color like the other paint servers (i.e. gradients).

	opacity (float) – opacity of the solid color in the range 0.0 (fully transparent) to 1.0 (fully opaque)

SVG Attributes

	solid-color – 'currentColor | <color> | inherit' (__init__() parameter color)

The solid-color attribute specifies the color that shall be used for this solidColor element. The keyword
"currentColor" can be specified in the same manner as within a <paint> specification for the fill and
stroke properties.

	solid-opacity – '<opacity-value> | inherit' (__init__() parameter opacity)

The solid-opacity parameter defines the opacity of the solidColor. Any values outside the range 0.0
(fully transparent) to 1.0 (fully opaque) must be clamped to this range.

ClipPath

	
class svgwrite.masking.ClipPath(**extra)

	The clipping path restricts the region to which paint can be applied.
Conceptually, any parts of the drawing that lie outside of the region
bounded by the currently active clipping path are not drawn. A clipping
path can be thought of as a mask wherein those pixels outside the clipping
path are black with an alpha value of zero and those pixels inside the
clipping path are white with an alpha value of one (with the possible
exception of anti-aliasing along the edge of the silhouette).

A clipPath element can contain path elements, text elements,
basic shapes (such as circle) or a use element. If a use
element is a child of a clipPath element, it must directly reference
path, text or basic shape elements. Indirect references are an
error.

Adding clipping elements to ClipPath:

dwg = svgwrite.Drawing()
clip_path = dwg.defs.add(dwg.clipPath())
clip_path.add(dwg.circle((100, 100), 50))

See also

http://www.w3.org/TR/SVG11/masking.html#ClippingPaths

SVG Attributes

	class – string

assigns one or more css-class-names to an element

	style – string

allows per-element css-style rules to be specified directly on a given element

	externalResourcesRequired – bool

False: if document rendering can proceed
even if external resources are unavailable else: True

	transform – use svgwrite.mixins.Transform methods

	clipPathUnits – 'userSpaceOnUse | objectBoundingBox'

Defines the coordinate system for the contents of the clipPath.

If clipPathUnits = 'userSpaceOnUse' , the contents of the clipPath
represent values in the current user coordinate system in place at the
time when the clipPath element is referenced (i.e., the user
coordinate system for the element referencing the clipPath element
via the clip-path property).

If clipPathUnits = 'objectBoundingBox' , then the user coordinate system
for the contents of the clipPath element is established using the
bounding box of the element to which the clipping path is applied.

Default is 'userSpaceOnUse'

Standard SVG Attributes

	Core Attributes

	Conditional Processing Attributes

	Presentation Attributes

Mask

	
class svgwrite.masking.Mask(start=None, size=None, **extra)

	In SVG, you can specify that any other graphics object or g element
can be used as an alpha mask for compositing the current object into the
background.

A mask can contain any graphical elements or container elements such
as a g.

See also

http://www.w3.org/TR/SVG11/masking.html#Masking

SVG Attributes

	class – string

assigns one or more css-class-names to an element

	style – string

allows per-element css-style rules to be specified directly on a given element

	externalResourcesRequired – bool

False: if document rendering can proceed even if external resources are
unavailable else: True

	maskUnits – 'userSpaceOnUse | objectBoundingBox'

Defines the coordinate system for attributes x, y, width and
height.

If maskUnits = 'userSpaceOnUse' , x, y, width and height
represent values in the current user coordinate system in place at the time
when the mask element is referenced (i.e., the user coordinate system
for the element referencing the mask element via the mask property).

If maskUnits = 'objectBoundingBox' , x, y, width and height
represent fractions or percentages of the bounding box of the element to
which the mask is applied.

Default is 'objectBoundingBox'.

	maskContentUnits – 'userSpaceOnUse | objectBoundingBox'

Defines the coordinate system for the contents of the mask.

If maskContentUnits = 'userSpaceOnUse' , the user coordinate system for
the contents of the mask element is the current user coordinate system
in place at the time when the mask element is referenced (i.e., the user
coordinate system for the element referencing the mask element via the
mask property).

If maskContentUnits = 'objectBoundingBox' , the user coordinate system for
the contents of the mask is established using the bounding box of the
element to which the mask is applied.

Default is 'userSpaceOnUse'.

	x – <coordinate> – start parameter

The x-axis coordinate of one corner of the rectangle for the largest
possible offscreen buffer. Note that the clipping path used to render any
graphics within the mask will consist of the intersection of the current
clipping path associated with the given object and the rectangle defined by
x, y, width and height.

Default is '-10%'.

	y – <coordinate> – start parameter

The y-axis coordinate of one corner of the rectangle for the largest
possible offscreen buffer.

Default is '-10%'.

	width – <length> – size parameter

The width of the largest possible offscreen buffer. Note that the clipping
path used to render any graphics within the mask will consist of the
intersection of the current clipping path associated with the given object
and the rectangle defined by x, y, width and height.

Default is '120%'.

	height – <length> – size parameter

The height of the largest possible offscreen buffer.

Default is '120%'.

Standard SVG Attributes

	Core Attributes

	Conditional Processing Attributes

	Presentation Attributes

animate module

Because the Web is a dynamic medium, SVG supports the ability to change
vector graphics over time.

See also

http://www.w3.org/TR/SVG11/animate.html

Set

	
class svgwrite.animate.Set(href=None, **extra)

	The set element provides a simple means of just setting the value
of an attribute for a specified duration. It supports all attribute types,
including those that cannot reasonably be interpolated, such as string
and boolean values. The set element is non-additive. The additive and
accumulate attributes are not allowed, and will be ignored if specified.

See also

http://www.w3.org/TR/SVG11/animate.html#SetElement

Parent Classes

	svgwrite.base.BaseElement

	svgwrite.mixins.XLink

Methods

	
Set.__init__(href=None, **extra)

	Set constructor.

	Parameters

	href – target svg element, if href is not None; else
the target SVG Element is the parent SVG Element.

	
Animate.set_href(element)

	
	Parameters

	element – set target svg element to element

	
Animate.set_target(attributeName, attributeType=None)

	Set animation attributes attributeName and attributeType.

	
Animate.set_event(onbegin=None, onend=None, onrepeat=None, onload=None)

	Set animation attributes onbegin, onend, onrepeat
and onload.

	
Animate.set_timing(begin=None, end=None, dur=None, min=None, max=None, restart=None, repeatCount=None, repeatDur=None)

	Set animation attributes begin, end, dur,
min, max, restart, repeatCount and
repeatDur.

	
Animate.freeze()

	Freeze the animation effect. (see also fill)

SVG Animation Attributes

	onbegin, onend, onrepeat, onload (Animation Event Attributes)

	attributeType, attributeName (Animation Target Attributes)

	begin, dur, end, min, max, restart, repeatCount, repeatDur, fill (Animation Timing Attributes)

SVG Attributes

	externalResourcesRequired – bool

False: if document rendering can proceed even if external resources are
unavailable else: True

	to – <value>
Specifies the value for the attribute during the duration of the set
element. The argument value must match the attribute type.

Standard SVG Attributes

	Core Attributes

	Conditional Processing Attributes

	XLink Attributes

AnimateMotion

	
class svgwrite.animate.AnimateMotion(path=None, href=None, **extra)

	The animateMotion element causes a referenced element to move
along a motion path.

See also

http://www.w3.org/TR/SVG11/animate.html#AnimateMotionElement

Parent Classes

	svgwrite.base.BaseElement

	svgwrite.mixins.XLink

	svgwrite.animate.Set

Methods

	
AnimateMotion.__init__(path=None, href=None, **extra)

	
	Parameters

	
	path – the motion path

	href – target svg element, if href is not None; else
the target SVG Element is the parent SVG Element.

	
AnimateMotion.set_value(path=None, calcMode=None, keyPoints=None, rotate=None)

	Set animation attributes path, calcMode, keyPoints and rotate.

SVG Animation Attributes

	onbegin, onend, onrepeat, onload (Animation Event Attributes)

	begin, dur, end, min, max, restart, repeatCount, repeatDur, fill (Animation Timing Attributes)

	calcMode, values, keyTimes, keySplines, from, to, by (Animation Value Attributes)

	additive, accumulate (Animation Addition Attributes)

SVG Attributes

	externalResourcesRequired – bool

False: if document rendering can proceed even if external resources are
unavailable else: True

	calcMode – 'discrete | linear | paced | spline'

Specifies the interpolation mode for the animation.

	path – <path-data> – path parameter

The motion path, expressed in the same format and interpreted the same way
as the d attribute on the Path element.
The effect of a motion path animation is to add a supplemental
transformation matrix onto the CTM for the referenced object which causes a
translation along the x- and y-axes of the current user coordinate system
by the computed X and Y values computed over time.

	keyPoints – <list-of-numbers>

keyPoints takes a semicolon-separated list of floating point values
between 0 and 1 and indicates how far along the motion path the object
shall move at the moment in time specified by corresponding keyTimes
value. Distance calculations use the user agent’s distance along the path
algorithm. Each progress value in the list corresponds to a value in the
keyTimes attribute list.

If a list of keyPoints is specified, there must be exactly as many
values in the keyPoints list as in the keyTimes list.

If there are any errors in the keyPoints specification (bad values,
too many or too few values), then the document is in error.

	rotate – <number> | 'auto' | 'auto-reverse'

The rotate attribute post-multiplies a supplemental transformation
matrix onto the CTM of the target element to apply a rotation
transformation about the origin of the current user coordinate system.
The rotation transformation is applied after the supplemental translation
transformation that is computed due to the path attribute.

	'auto'

Indicates that the object is rotated over time by the angle of the
direction (i.e., directional tangent vector) of the motion path.

	'auto-reverse'

Indicates that the object is rotated over time by the angle of the
direction (i.e., directional tangent vector) of the motion path plus
180 degrees.

	<number>

Indicates that the target element has a constant rotation transformation
applied to it, where the rotation angle is the specified number of
degrees.

Default value is '0'.

	origin – 'default'

The origin attribute is defined in the
SMIL Animation specification [http://www.w3.org/TR/2001/REC-smil-animation-20010904/#MotionOriginAttribute]

Standard SVG Attributes

	Core Attributes

	Conditional Processing Attributes

	XLink Attributes

Animate

	
class svgwrite.animate.Animate(attributeName=None, values=None, href=None, **extra)

	The animate element allows scalar attributes and properties to be
assigned different values over time .

See also

http://www.w3.org/TR/SVG11/animate.html#AnimateElement

Parent Classes

	svgwrite.base.BaseElement

	svgwrite.mixins.XLink

	svgwrite.animate.Set

Methods

	
Animate.__init__(attributeName=None, values=None, href=None, **extra)

	
	Parameters

	
	attributeName – name of the SVG Attribute to animate

	values – interpolation values, string as <semicolon-list> or a python list

	href – target svg element, if href is not None; else
the target SVG Element is the parent SVG Element.

	
Animate.set_value(values, calcMode=None, keyTimes=None, keySplines=None, from_=None, to=None, by=None)

	Set animation attributes values, calcMode, keyTimes,
keySplines, from, to and by.

SVG Animation Attributes

	onbegin, onend, onrepeat, onload (Animation Event Attributes)

	attributeType, attributeName (Animation Target Attributes)

	begin, dur, end, min, max, restart, repeatCount, repeatDur, fill (Animation Timing Attributes)

	calcMode, values, keyTimes, keySplines, from, to, by (Animation Value Attributes)

	additive, accumulate (Animation Addition Attributes)

SVG Attributes

	externalResourcesRequired – bool

False: if document rendering can proceed even if external resources are
unavailable else: True

Standard SVG Attributes

	Core Attributes

	Conditional Processing Attributes

	XLink Attributes

AnimateColor

	
class svgwrite.animate.AnimateColor(attributeName=None, values=None, href=None, **extra)

	The animateColor element specifies a color transformation over
time.

See also

http://www.w3.org/TR/SVG11/animate.html#AnimateColorElement

The from, by and to attributes take color values, where each
color value is expressed using the following syntax (the same syntax as used
in SVG’s properties that can take color values):

<color> <icccolor>?

The values attribute for the animateColor element consists of a
semicolon-separated list of color values, with each color value expressed in
the above syntax.

Out of range color values can be provided, but user agent processing will be
implementation dependent. User agents should clamp color values to allow
color range values as late as possible, but note that system differences
might preclude consistent behavior across different systems.

The color-interpolation property applies to color interpolations that
result from animateColor animations.

Parent Classes

	svgwrite.base.BaseElement

	svgwrite.mixins.XLink

	svgwrite.animate.Animate

SVG Animation Attributes

	onbegin, onend, onrepeat, onload (Animation Event Attributes)

	attributeType, attributeName (Animation Target Attributes)

	begin, dur, end, min, max, restart, repeatCount, repeatDur, fill (Animation Timing Attributes)

	calcMode, values, keyTimes, keySplines, from, to, by (Animation Value Attributes)

	additive, accumulate (Animation Addition Attributes)

Standard SVG Attributes

	Core Attributes

	Conditional Processing Attributes

	XLink Attributes

AnimateTransform

	
class svgwrite.animate.AnimateTransform(transform, element=None, **extra)

	The animateTransform element animates a transformation attribute
on a target element, thereby allowing animations to control translation,
scaling, rotation and/or skewing.

See also

http://www.w3.org/TR/SVG11/animate.html#AnimateTransformElement

Parent Classes

	svgwrite.base.BaseElement

	svgwrite.mixins.XLink

	svgwrite.animate.Animate

Methods

	
AnimateTransform.__init__(transform, element=None, **extra)

	
	Parameters

	
	element – target svg element, if element is not None; else
the target svg element is the parent svg element.

	transform (string) – 'translate | scale | rotate | skewX | skewY'

SVG Animation Attributes

	onbegin, onend, onrepeat, onload (Animation Event Attributes)

	attributeType, attributeName (Animation Target Attributes)

	begin, dur, end, min, max, restart, repeatCount, repeatDur, fill (Animation Timing Attributes)

	calcMode, values, keyTimes, keySplines, from, to, by (Animation Value Attributes)

	additive, accumulate (Animation Addition Attributes)

SVG Attributes

	externalResourcesRequired – bool

False: if document rendering can proceed even if external resources are
unavailable else: True

	type – 'translate | scale | rotate | skewX | skewY'

Indicates the type of transformation which is to have its values change
over time. If the attribute is not specified, then the effect is as if a
value of translate were specified.

The from, by and to attributes take a value expressed using the
same syntax that is available for the given transformation type:

	For a type = 'translate', each individual value is expressed as
<tx> [,<ty>].

	For a type = 'scale', each individual value is expressed as
<sx> [,<sy>].

	For a type = 'rotate', each individual value is expressed as
<rotate-angle> [<cx> <cy>].

	For a type = 'skewX' and type = 'skewY', each individual value is
expressed as <skew-angle>.

Standard SVG Attributes

	Core Attributes

	Conditional Processing Attributes

	XLink Attributes

SVG Animation Attributes

	Animation Events Attributes
	onbegin

	onend

	onrepeat

	onload

	Animation Target Attributes
	attributeType

	attributeName

	Animation Timing Attributes
	begin

	dur

	end

	min

	max

	restart

	repeatCount

	repeatDur

	fill

	Animation Value Attributes
	calcMode

	values

	keyTimes

	keySplines

	from

	to

	by

	Animation Addition Attributes
	additive

	accumulate

Animation Events Attributes

onbegin

See also

http://www.w3.org/TR/SVG11/script.html#OnBeginEventAttribute

onbegin = <anything>

Specifies some script to execute when “bubbling” or “at target” phase
listeners for the corresponding event are fired on the element the attribute
is specified on. See the Complete list of support events to determine which
event each of these event attributes corresponds to.

Complete list of support events: http://www.w3.org/TR/SVG11/interact.html#SVGEvents

onend

onend = <anything>

Complete list of support events: http://www.w3.org/TR/SVG11/interact.html#SVGEvents

See also

http://www.w3.org/TR/SVG11/script.html#OnEndEventAttribute

onrepeat

onrepeat = <anything>

Complete list of support events: http://www.w3.org/TR/SVG11/interact.html#SVGEvents

See also

http://www.w3.org/TR/SVG11/script.html#OnRepeatEventAttribute

onload

onload = <anything>

Specifies some script to execute when “bubbling” or “at target” phase
listeners for the SVGLoad event are fired on the element the attribute is
specified on.

See also

http://www.w3.org/TR/SVG11/script.html#OnLoadEventAttribute

Animation Target Attributes

attributeType

Specifies the namespace in which the target attribute and its associated
values are defined. The attribute value is one of the following (values are
case-sensitive):

	value

	description

	CSS

	This specifies that the value of attributeName is the name
of a CSS property defined as animatable in this specification.

	XML

	This specifies that the value of attributeName is the name
of an XML attribute defined in the default XML namespace for the
target element. If the value for attributeName has an XMLNS
prefix, the implementation must use the associated namespace as
defined in the scope of the target element. The attribute must
be defined as animatable in this specification.

	auto

	The implementation should match the attributeName to an
attribute for the target element. The implementation must first
search through the list of CSS properties for a matching property
name, and if none is found, search the default XML namespace for
the element.

The default value is 'auto'.

See also

http://www.w3.org/TR/SVG11/animate.html#AttributeTypeAttribute

attributeName

attributeName = <attributeName>

Specifies the name of the target attribute. An XMLNS prefix may be used to
indicate the XML namespace for the attribute. The prefix will be interpreted
in the scope of the current (i.e., the referencing) animation element.

See also

http://www.w3.org/TR/SVG11/animate.html#AttributeNameAttribute

Animation Timing Attributes

begin

begin = <begin-value-list>

Defines when the element should begin (i.e. become active).

The attribute value is a semicolon separated list of values.

See also

http://www.w3.org/TR/SVG11/animate.html#BeginAttribute

dur

dur = <Clock-value> | 'media | indefinite'

Specifies the simple duration.

The attribute value can be one of the following:

	value

	description

	<Clock-value>

	Specifies the length of the simple duration in presentation
time. Value must be greater than 0.

	media

	Specifies the simple duration as the intrinsic media duration.
This is only valid for elements that define media.(For SVG’s
animation elements, if 'media' is specified, the attribute
will be ignored.)

	indefinite

	Specifies the simple duration as indefinite.

If the animation does not have a dur attribute, the simple duration is
indefinite. Note that interpolation will not work if the simple duration is
indefinite (although this may still be useful for set elements).

See also

http://www.w3.org/TR/SVG11/animate.html#DurAttribute

end

end = <end-value-list>

Defines an end value for the animation that can constrain the active duration.

The attribute value is a semicolon separated list of values.

A value of 'indefinite' specifies that the end of the animation will be
determined by an endElement method call (the animation DOM methods are
described in DOM interfaces).

See also

http://www.w3.org/TR/SVG11/animate.html#EndAttribute

min

min = <Clock-value> | 'media'

Specifies the minimum value of the active duration.

	value

	description

	<Clock-value>

	Specifies the length of the minimum value of the active
duration, measured in local time.
Value must be greater than 0.

	'media'

	Specifies the minimum value of the active duration as the
intrinsic media duration. This is only valid for elements
that define media. (For SVG’s animation elements, if
'media' is specified, the attribute will be ignored.)

The default value for min is '0'. This does not constrain the active
duration at all.

See also

http://www.w3.org/TR/SVG11/animate.html#MinAttribute

max

max = <Clock-value> | 'media'

Specifies the maximum value of the active duration.

	value

	description

	<Clock-value>

	Specifies the length of the maximum value of the active
duration, measured in local time.
Value must be greater than 0.

	'media'

	Specifies the maximum value of the active duration as the
intrinsic media duration. This is only valid for elements
that define media. (For SVG’s animation elements, if
'media' is specified, the attribute will be ignored.)

There is no default value for max. This does not constrain the active
duration at all.

See also

http://www.w3.org/TR/SVG11/animate.html#MaxAttribute

restart

restart = 'always | whenNotActive | never'

	value

	description

	'always'

	The animation can be restarted at any time. This is the
default value.

	'whenNotActive'

	The animation can only be restarted when it is not active
(i.e. after the active end). Attempts to restart the
animation during its active duration are ignored.

	'never'

	The element cannot be restarted for the remainder of the
current simple duration of the parent time container.
(In the case of SVG, since the parent time container is
the SVG document fragment, then the animation cannot be
restarted for the remainder of the document duration.)

See also

http://www.w3.org/TR/SVG11/animate.html#RestartAttribute

repeatCount

repeatCount = <number> | 'indefinite'

Specifies the number of iterations of the animation function. It can have the
following attribute values:

	value

	description

	<number>

	This is a (base 10) “floating point” numeric value that
specifies the number of iterations. It can include partial
iterations expressed as fraction values. A fractional value
describes a portion of the simple duration. Values must be
greater than 0.

	'indefinite'

	The animation is defined to repeat indefinitely (i.e. until
the document ends).

See also

http://www.w3.org/TR/SVG11/animate.html#RepeatCountAttribute

repeatDur

repeatDur = <Clock-value> | 'indefinite'

Specifies the total duration for repeat. It can have the following attribute
values:

	value

	description

	<Clock-value>

	Specifies the duration in presentation time to repeat the
animation function f(t).

	'indefinite'

	The animation is defined to repeat indefinitely (i.e. until
the document ends).

See also

http://www.w3.org/TR/SVG11/animate.html#RepeatDurAttribute

fill

fill = 'freeze | remove'

This attribute can have the following values:

	value

	description

	'freeze'

	The animation effect F(t) is defined to freeze the effect value
at the last value of the active duration. The animation effect
is “frozen” for the remainder of the document duration (or until
the animation is restarted - see SMIL Animation: Restarting
animation).

	'remove'

	The animation effect is removed (no longer applied) when the
active duration of the animation is over. After the active end
of the animation, the animation no longer affects the target
(unless the animation is restarted - see SMIL Animation:
Restarting animation).

This is the default value.

See also

http://www.w3.org/TR/SVG11/animate.html#FillAttribute

Animation Value Attributes

calcMode

calcMode = 'discrete | linear | paced | spline'

Specifies the interpolation mode for the animation. This can take any of the
following values. The default mode is 'linear', however if the attribute
does not support linear interpolation (e.g. for strings), the calcMode
attribute is ignored and discrete interpolation is used.

	value

	description

	'discrete'

	This specifies that the animation function will jump from one
value to the next without any interpolation.

	'linear'

	Simple linear interpolation between values is used to
calculate the animation function. Except for
animateMotion, this is the default calcMode.

	'paced'

	Defines interpolation to produce an even pace of change across
the animation. This is only supported for values that define
a linear numeric range, and for which some notion of
“distance” between points can be calculated (e.g. position,
width, height, etc.). If 'paced' is specified, any
keyTimes or keySplines will be ignored. For
animateMotion, this is the default calcMode.

	'spline'

	Interpolates from one value in the values list to the
next according to a time function defined by a cubic Bézier
spline. The points of the spline are defined in the
keyTimes attribute, and the control points for each
interval are defined in the keySplines attribute.

See also

http://www.w3.org/TR/SVG11/animate.html#CalcModeAttribute

values

values = <list>

A semicolon-separated list of one or more values. Vector-valued attributes
are supported using the vector syntax of the attributeType domain.
Per the SMIL specification, leading and trailing white space, and white
space before and after semicolon separators, is allowed and will be ignored.

See also

http://www.w3.org/TR/SVG11/animate.html#ValuesAttribute

keyTimes

keyTimes = <list>

A semicolon-separated list of time values used to control the pacing of the
animation. Each time in the list corresponds to a value in the values
attribute list, and defines when the value is used in the animation function.
Each time value in the keyTimes list is specified as a floating point
value between 0 and 1 (inclusive), representing a proportional offset into
the simple duration of the animation element.

If a list of keyTimes is specified, there must be exactly as many values
in the keyTimes list as in the values list.

Each successive time value must be greater than or equal to the preceding
time value.

The keyTimes list semantics depends upon the interpolation mode:

	For linear and spline animation, the first time value in the list must be
0, and the last time value in the list must be 1. The key time associated
with each value defines when the value is set; values are interpolated
between the key times.

	For discrete animation, the first time value in the list must be 0. The
time associated with each value defines when the value is set; the
animation function uses that value until the next time defined in keyTimes.

If the interpolation mode is 'paced', the keyTimes attribute is ignored.

If there are any errors in the keyTimes specification (bad values, too
many or too few values), the document fragment is in error.

If the simple duration is indefinite, any keyTimes specification will be
ignored.

See also

http://www.w3.org/TR/SVG11/animate.html#KeyTimesAttribute

keySplines

keySplines = <list>

A set of Bézier control points associated with the keyTimes list,
defining a cubic Bézier function that controls interval pacing. The attribute
value is a semicolon-separated list of control point descriptions. Each
control point description is a set of four values: x1 y1 x2 y2, describing
the Bézier control points for one time segment. Note: SMIL allows these
values to be separated either by commas with optional whitespace, or by
whitespace alone. The ‘keyTimes’ values that define the associated segment
are the Bézier “anchor points”, and the ‘keySplines’ values are the control
points. Thus, there must be one fewer sets of control points than there are
keyTimes.

The values must all be in the range 0 to 1.

This attribute is ignored unless the calcMode is set to 'spline'.

If there are any errors in the keySplines specification (bad values, too
many or too few values), the document fragment is in error.

See also

http://www.w3.org/TR/SVG11/animate.html#KeySplinesAttribute

from

from = <value>

Specifies the starting value of the animation.

See also

http://www.w3.org/TR/SVG11/animate.html#FromAttribute

to

to = <value>

Specifies the ending value of the animation.

See also

http://www.w3.org/TR/SVG11/animate.html#ToAttribute

by

by = <value>

Specifies a relative offset value for the animation.

See also

http://www.w3.org/TR/SVG11/animate.html#ByAttribute

Animation Addition Attributes

additive

additive = 'replace | sum'

Controls whether or not the animation is additive.

	value

	description

	'sum'

	Specifies that the animation will add to the underlying value of
the attribute and other lower priority animations.

	'replace'

	Specifies that the animation will override the underlying value
of the attribute and other lower priority animations. This is the
default, however the behavior is also affected by the animation
value attributes by and to, as described in SMIL
Animation: How from, to and by attributes affect additive
behavior.

See also

http://www.w3.org/TR/SVG11/animate.html#AdditiveAttribute

accumulate

accumulate = 'none | sum'

Controls whether or not the animation is cumulative.

	value

	description

	'sum'

	Specifies that each repeat iteration after the first builds upon
the last value of the previous iteration.

	'none'

	Specifies that repeat iterations are not cumulative. This is the
default.

This attribute is ignored if the target attribute value does not support
addition, or if the animation element does not repeat.

Cumulative animation is not defined for “to animation”.

This attribute will be ignored if the animation function is specified with
only the to attribute.

See also

http://www.w3.org/TR/SVG11/animate.html#AccumulateAttribute

Introduction

This chapter describes SVG’s declarative filter effects feature set, which
when combined with the 2D power of SVG can describe much of the common
artwork on the Web in such a way that client-side generation and alteration
can be performed easily. In addition, the ability to apply filter effects to
SVG graphics elements and container elements helps to maintain the semantic
structure of the document, instead of resorting to images which aside from
generally being a fixed resolution tend to obscure the original semantics
of the elements they replace. This is especially true for effects applied to
text.

Filter effects are defined by filter elements. To apply a filter effect
to a graphics element or a container element, you set the value of
the filter property on the given element such that it references the
filter effect.

See also

http://www.w3.org/TR/SVG11/filters.html#Introduction

Filter Element

	
class svgwrite.filters.Filter(start=None, size=None, resolution=None, inherit=None, **extra)

	The filter element is a container element for filter primitives, and
also a factory for filter primitives.

See also

http://www.w3.org/TR/SVG11/filters.html#FilterElement

Parent Classes

	svgwrite.base.BaseElement

	svgwrite.mixins.XLink

	svgwrite.mixins.Presentation

Methods

	
Filter.__init__(start=None, size=None, resolution=None, inherit=None, **extra)

	
	Parameters

	
	start (2-tuple) – defines the start point of the filter effects region (x, y)

	size (2-tuple) – defines the size of the filter effects region (width, height)

	resolution – takes the form 'x-pixels [y-pixels]', and indicates
the width and height of the intermediate images in pixels.

	inherit – inherits properties from Filter inherit see: xlink:href

	
Filter.feBlend(in_, start=None, size=None, **extra)

	create and add a feBlend Filter Element

	
Filter.feColorMatrix(in_, start=None, size=None, **extra)

	create and add a feColorMatrix Filter Element

	
Filter.feComponentTransfer(in_, start=None, size=None, **extra)

	create and add a feComponentTransfer Filter Element

	
Filter.feComposite(in_, start=None, size=None, **extra)

	create and add a feComposite Filter Element

	
Filter.feConvolveMatrix(in_, start=None, size=None, **extra)

	create and add a feConvolveMatrix Filter Element

	
Filter.feDiffuseLighting(in_, start=None, size=None, **extra)

	create and add a feDiffuseLighting Filter Element

	
Filter.feDisplacementMap(in_, start=None, size=None, **extra)

	create and add a feDisplacementMap Filter Element

	
Filter.feFlood(start=None, size=None, **extra)

	create and add a feFlood Filter Element

	
Filter.feGaussianBlur(in_, start=None, size=None, **extra)

	create and add a feGaussianBlur Filter Element

	
Filter.feImage(href, start=None, size=None, **extra)

	create and add a feImage Filter Element

	
Filter.feMerge(start=None, size=None, **extra)

	create and add a feMerge Filter Element

	
Filter.feMorphology(in_, start=None, size=None, **extra)

	create and add a feMorphology Filter Element

	
Filter.feOffset(in_, start=None, size=None, **extra)

	create and add a feOffset Filter Element

	
Filter.feSpecularLighting(in_, start=None, size=None, **extra)

	create and add a feSpecularLighting Filter Element

	
Filter.feTile(in_, start=None, size=None, **extra)

	create and add a feTile Filter Element

	
Filter.feTurbulence(start=None, size=None, **extra)

	create and add a feTurbulence Filter Element

SVG Attributes

	filterUnits – 'userSpaceOnUse | objectBoundingBox'

See Filter effects region. [http://www.w3.org/TR/SVG11/filters.html#FilterEffectsRegion]

	primitiveUnits – 'userSpaceOnUse | objectBoundingBox'
Specifies the coordinate system for the various length values within the
filter primitives and for the attributes that define the filter primitive
subregion.

If primitiveUnits = 'userSpaceOnUse', any length values within the
filter definitions represent values in the current user coordinate system
in place at the time when the filter element is referenced (i.e., the
user coordinate system for the element referencing the filter element
via a filter property).

If primitiveUnits = 'objectBoundingBox', then any length values
within the filter definitions represent fractions or percentages of the
bounding box on the referencing element (see Object bounding box units).
Note that if only one number was specified in a <number-optional-number>
value this number is expanded out before the primitiveUnits computation
takes place.

If attribute primitiveUnits is not specified, then the effect is as if
a value of 'userSpaceOnUse' were specified.

	x – <coordinate> – start parameter

See Filter effects region. [http://www.w3.org/TR/SVG11/filters.html#FilterEffectsRegion]

	y – <coordinate> – start parameter

See Filter effects region. [http://www.w3.org/TR/SVG11/filters.html#FilterEffectsRegion]

	width – <length> – size parameter

See Filter effects region. [http://www.w3.org/TR/SVG11/filters.html#FilterEffectsRegion]

	height – <length> – size parameter

See Filter effects region. [http://www.w3.org/TR/SVG11/filters.html#FilterEffectsRegion]

	filterRes – <number-optional-number> – resolution parameter

See Filter effects region. [http://www.w3.org/TR/SVG11/filters.html#FilterEffectsRegion]

	xlink:href – <iri> – inherit parameter

A IRI reference to another filter element within the current SVG document
fragment. Any attributes which are defined on the referenced filter element
which are not defined on this element are inherited by this element.

Standard SVG Attributes

	Core Attributes

	Presentation Attributes

	XLink Attributes

Example

Source: https://secure.wikimedia.org/wikibooks/de/wiki/SVG/_Effekte#Urfilter_fePointLight.2C_Punktlichtquelle

 import sys
 from pathlib import Path
 sys.path.insert(0, str(Path(__file__).resolve().parent.parent))

import svgwrite
dwg = svgwrite.Drawing("fePointLight.svg")

filtr = dwg.defs.add(
 dwg.filter(id="DL", start=(0, 0), size=(500, 500),
 filterUnits="userSpaceOnUse"))
diffuse_lighting = filtr.feDiffuseLighting(
 start=(0, 0), size=(500, 500),
 surfaceScale=10,
 diffuseConstant=1,
 kernelUnitLength=1,
 lighting_color="#f8f")
point_light = diffuse_lighting.fePointLight((500, 250, 250))
point_light.add(
 dwg.animate('x',
 values=(0,100,500,100,0),
 dur='30s',
 repeatDur='indefinite'))
point_light.add(
 dwg.animate('y',
 values=(0,500,400,-100,0),
 dur='31s',
 repeatDur='indefinite'))
point_light.add(
 dwg.animate('z',
 values=(0,1000,500,-100,0),
 dur='37s',
 repeatDur='indefinite'))
dwg.save()

and the XML result (with manual reformatting):

<?xml version="1.0" encoding="utf-8" ?>
<svg baseProfile="full" height="100%" version="1.1" width="100%"
 xmlns="http://www.w3.org/2000/svg"
 xmlns:ev="http://www.w3.org/2001/xml-events"
 xmlns:xlink="http://www.w3.org/1999/xlink">
 <defs>
 <filter id="DL" filterUnits="userSpaceOnUse"
 x="0" y="0" width="500" height="500" >
 <feDiffuseLighting diffuseConstant="1"
 x="0" y="0" width="500" height="500"
 in="SourceGraphic"
 kernelUnitLength="1"
 lighting-color="#f8f"
 surfaceScale="10">
 <fePointLight x="500" y="250" z="250">
 <animate attributeName="x"
 dur="30s"
 repeatDur="indefinite"
 values="0;100;500;100;0" />
 <animate attributeName="y"
 dur="31s"
 repeatDur="indefinite"
 values="0;500;400;-100;0" />
 <animate attributeName="z"
 dur="37s"
 repeatDur="indefinite"
 values="0;1000;500;-100;0" />
 </fePointLight>
 </feDiffuseLighting>
 </filter>
 </defs>
</svg>

Filter Primitives Overview

See also

http://www.w3.org/TR/SVG11/filters.html#FilterPrimitivesOverview

Unless otherwise stated, all image filters operate on premultiplied RGBA
samples. Filters which work more naturally on non-premultiplied data
(feColorMatrix and feComponentTransfer) will temporarily undo and redo
premultiplication as specified. All raster effect filtering operations take
1 to N input RGBA images, additional attributes as parameters, and produce a
single output RGBA image.

The RGBA result from each filter primitive will be clamped into the allowable
ranges for colors and opacity values. Thus, for example, the result from a
given filter primitive will have any negative color values or opacity values
adjusted up to color/opacity of zero.

The color space in which a particular filter primitive performs its operations
is determined by the value of property color-interpolation-filters on the
given filter primitive. A different property, color-interpolation determines
the color space for other color operations. Because these two properties have
different initial values (color-interpolation-filters has an initial value
of linearRGB whereas color-interpolation has an initial value of sRGB),
in some cases to achieve certain results (e.g., when coordinating gradient
interpolation with a filtering operation) it will be necessary to explicitly
set color-interpolation to linearRGB or color-interpolation-filters
to sRGB on particular elements. Note that the examples below do not explicitly
set either color-interpolation or color-interpolation-filters, so the
initial values for these properties apply to the examples.

Common SVG Attributes for Filter Primitives

With the exception of the in attribute, all of the following attributes
are available on all filter primitive elements:

	x – <coordinate>

The minimum x coordinate for the subregion which restricts calculation and
rendering of the given filter primitive. See filter primitive subregion.

	y – <coordinate>

The minimum y coordinate for the subregion which restricts calculation and
rendering of the given filter primitive. See filter primitive subregion.

	width – <length>

The width of the subregion which restricts calculation and rendering of the
given filter primitive. See filter primitive subregion.

	height – <length>

The height of the subregion which restricts calculation and rendering of
the given filter primitive. See filter primitive subregion.

	result – <filter-primitive-reference>

Assigned name for this filter primitive. If supplied, then graphics that
result from processing this filter primitive can be referenced by an in
attribute on a subsequent filter primitive within the same filter element.
If no value is provided, the output will only be available for re-use as
the implicit input into the next filter primitive if that filter primitive
provides no value for its in attribute.

	in – 'SourceGraphic | SourceAlpha | BackgroundImage | BackgroundAlpha
| FillPaint | StrokePaint' | <filter-primitive-reference>

Identifies input for the given filter primitive. The value can be either
one of six keywords or can be a string which matches a previous result
attribute value within the same filter element. If no value is provided
and this is the first filter primitive, then this filter primitive will use
'SourceGraphic' as its input. If no value is provided and this is a subsequent
filter primitive, then this filter primitive will use the result from the
previous filter primitive as its input.

	SourceGraphic

This keyword represents the graphics elements that were the original input
into the filter element. For raster effects filter primitives, the
graphics elements will be rasterized into an initially clear RGBA raster
in image space. Pixels left untouched by the original graphic will be left
clear. The image is specified to be rendered in linear RGBA pixels. The
alpha channel of this image captures any anti-aliasing specified by SVG.
(Since the raster is linear, the alpha channel of this image will represent
the exact percent coverage of each pixel.)

	SourceAlpha

This keyword represents the graphics elements that were the original
input into the filter element. SourceAlpha has all of the same rules
as SourceGraphic except that only the alpha channel is used. The input
image is an RGBA image consisting of implicitly black color values for
the RGB channels, but whose alpha channel is the same as SourceGraphic.
If this option is used, then some implementations might need to rasterize
the graphics elements in order to extract the alpha channel.

	BackgroundImage

This keyword represents an image snapshot of the canvas under the filter
region at the time that the filter element was invoked. See Accessing
the background image.

	BackgroundAlpha

Same as BackgroundImage except only the alpha channel is used. See
SourceAlpha and Accessing the background image.

	FillPaint

This keyword represents the value of the fill property on the target
element for the filter effect. The FillPaint image has conceptually
infinite extent. Frequently this image is opaque everywhere, but it might
not be if the “paint” itself has alpha, as in the case of a gradient or
pattern which itself includes transparent or semi-transparent parts.

	StrokePaint

This keyword represents the value of the stroke property on the target
element for the filter effect. The StrokePaint image has conceptually
infinite extent. Frequently this image is opaque everywhere, but it might
not be if the “paint” itself has alpha, as in the case of a gradient or
pattern which itself includes transparent or semi-transparent parts.

feBlend Filter Element

See also

http://www.w3.org/TR/SVG11/filters.html#feBlendElement

This filter composites two objects together using commonly used imaging
software blending modes. It performs a pixel-wise combination of two input
images.

For common properties see: Filter Primitives Overview

SVG Attributes

	mode – 'normal | multiply | screen | darken | lighten'

One of the image blending modes. If attribute mode is not specified,
then the effect is as if a value of 'normal' were specified.

see also: http://www.w3.org/TR/SVG11/filters.html#feBlendModeAttribute

	in – (see in attribute)

	in2 – (see in attribute)

The second input image to the blending operation. This attribute can take
on the same values as the in attribute.

feColorMatrix Filter Element

See also

http://www.w3.org/TR/SVG11/filters.html#feColorMatrixElement

For common properties see: Filter Primitives Overview

SVG Attributes

	in – (see in attribute)

	type – 'matrix | saturate | hueRotate | luminanceToAlpha'

Indicates the type of matrix operation. The keyword matrix indicates
that a full 5x4 matrix of values will be provided. The other keywords
represent convenience shortcuts to allow commonly used color operations to
be performed without specifying a complete matrix. If attribute type
is not specified, then the effect is as if a value of matrix were specified.

	values = list of <number>s

The contents of values depends on the value of attribute type see:
http://www.w3.org/TR/SVG11/filters.html#feColorMatrixValuesAttribute

feComponentTransfer Filter Element

See also

http://www.w3.org/TR/SVG11/filters.html#feComponentTransferElement

This filter primitive performs component-wise remapping of data:

R' = feFuncR(R)
G' = feFuncG(G)
B' = feFuncB(B)
A' = feFuncA(A)

for every pixel. It allows operations like brightness adjustment, contrast
adjustment, color balance or thresholding.

The calculations are performed on non-premultiplied color values. If the
input graphics consists of premultiplied color values, those values are
automatically converted into non-premultiplied color values for this operation.
(Note that the undoing and redoing of the premultiplication can be avoided if
feFuncA is the identity transform and all alpha values on the source graphic
are set to 1.)

For common properties see: Filter Primitives Overview

SVG Attributes

	in – (see in attribute)

Methods

	
feFuncR(type_, **extra)

	create and add a transfer function for the red component of the input graphic

	
feFuncG(type_, **extra)

	create and add a transfer function for the green component of the input graphic

	
feFuncB(type_, **extra)

	create and add a transfer function for the blue component of the input graphic

	
feFuncA(type_, **extra)

	create and add a transfer function for the alpha component of the input graphic

Parameters for feFuncX() Methods

	type – 'identity | table | discrete | linear | gamma'

see: http://www.w3.org/TR/SVG11/filters.html#feComponentTransferTypeAttribute

	tableValues – (list of <number>s)

When type = 'table', the list of <number>s v0,v1,…vn, separated
by white space and/or a comma, which define the lookup table. An empty list
results in an identity transfer function.

	slope – <number>

When type = 'linear', the slope of the linear function.

	intercept – <number>

When type = 'linear', the intercept of the linear function.

	amplitude – <number>

When type = 'gamma', the amplitude of the gamma function.

	exponent – <number>

When type = 'gamma', the exponent of the gamma function.

	offset – <number>

When type = 'gamma', the offset of the gamma function.

feComposite Filter Element

See also

http://www.w3.org/TR/SVG11/filters.html#feCompositeElement

This filter performs the combination of the two input images pixel-wise in image
space using one of the Porter-Duff compositing operations: over, in, atop, out,
xor. Additionally, a component-wise arithmetic operation (with the result clamped
between [0..1]) can be applied.

The arithmetic operation is useful for combining the output from the
feDiffuseLighting and feSpecularLighting filters with texture data.
It is also useful for implementing dissolve. If the arithmetic operation is
chosen, each result pixel is computed using the following formula:

result = k1*i1*i2 + k2*i1 + k3*i2 + k4

For this filter primitive, the extent of the resulting image might grow as
described in the section that describes the filter primitive subregion.

For common properties see: Filter Primitives Overview

SVG Attributes

	in – (see in attribute)

	operator – 'over | in | out | atop | xor | arithmetic

The compositing operation that is to be performed. All of the operator
types except arithmetic match the correspond operation as described in [PORTERDUFF].
The arithmetic operator is described above. If attribute operator is not
specified, then the effect is as if a value of 'over' were specified.

	k1, k2, k3, k4 – <number>

Only applicable if operator = 'arithmetic'.
If the attribute is not specified, the effect is as if a value of 0 were specified.

	in2 – (see in attribute)

The second input image to the compositing operation. This attribute can
take on the same values as the in attribute.

feConvolveMatrix Filter Element

See also

http://www.w3.org/TR/SVG11/filters.html#feConvolveMatrixElement

feConvolveMatrix applies a matrix convolution filter effect. A convolution
combines pixels in the input image with neighboring pixels to produce a resulting
image. A wide variety of imaging operations can be achieved through convolutions,
including blurring, edge detection, sharpening, embossing and beveling.

For common properties see: Filter Primitives Overview

SVG Attributes

	in – (see in attribute)

	order – <number-optional-number>

Indicates the number of cells in each dimension for kernelMatrix. The
values provided must be <integer>`s greater than zero. The first number,
`<orderX>, indicates the number of columns in the matrix. The second number,
<orderY>, indicates the number of rows in the matrix. If <orderY> is not
provided, it defaults to <orderX>.

If the attribute is not specified, the effect is as if a value of 3 were
specified.

	kernelMatrix – <list of numbers>

The list of <number>`s that make up the kernel matrix for the convolution.
Values are separated by space characters and/or a comma. The number of
entries in the list must equal `<orderX> times <orderY>.

	divisor – <number>

After applying the kernelMatrix to the input image to yield a number,
that number is divided by divisor to yield the final destination color
value. The default value is the sum of all values in kernelMatrix, with
the exception that if the sum is zero, then the divisor is set to 1.

	bias = <number>

After applying the kernelMatrix to the input image to yield a number and
applying the divisor, the bias attribute is added to each component.

	targetX – <integer>

Determines the positioning in X of the convolution matrix relative to a
given target pixel in the input image. The leftmost column of the matrix is
column number zero. The value must be such that: 0 <= targetX < orderX. By
default, the convolution matrix is centered in X over each pixel of the
input image (i.e., targetX = floor (orderX / 2)).

	
	targetY – <integer>

	Determines the positioning in Y of the convolution matrix relative to a
given target pixel in the input image. The topmost row of the matrix is
row number zero. The value must be such that: 0 <= targetY < orderY. By
default, the convolution matrix is centered in Y over each pixel of the
input image (i.e., targetY = floor (orderY / 2)).

	edgeMode – 'duplicate | wrap | none'

Determines how to extend the input image as necessary with color values so
that the matrix operations can be applied when the kernel is positioned at
or near the edge of the input image.

	'duplicate' indicates that the input image is extended along each of its
borders as necessary by duplicating the color values at the given edge of
the input image.

	'wrap' indicates that the input image is extended by taking the color
values from the opposite edge of the image.

	'none' indicates that the input image is extended with pixel values of
zero for R, G, B and A.

If attribute edgeMode is not specified, then the effect is as if a value
of 'duplicate' were specified.

	kernelUnitLength – <number-optional-number>

The first number is the <dx> value. The second number is the <dy> value.
If the <dy> value is not specified, it defaults to the same value as <dx>.
Indicates the intended distance in current filter units (i.e., units as
determined by the value of attribute primitiveUnits) between successive
columns and rows, respectively, in the kernelMatrix. By specifying
value(s) for kernelUnitLength, the kernel becomes defined in a scalable,
abstract coordinate system. If kernelUnitLength is not specified, the
default value is one pixel in the offscreen bitmap, which is a pixel-based
coordinate system, and thus potentially not scalable. For some level of
consistency across display media and user agents, it is necessary that a
value be provided for at least one of filterRes and kernelUnitLength.
In some implementations, the most consistent results and the fastest performance
will be achieved if the pixel grid of the temporary offscreen images aligns
with the pixel grid of the kernel. A negative or zero value is an error.

	preserveAlpha – 'false | true'

A value of false indicates that the convolution will apply to all channels,
including the alpha channel.

A value of true indicates that the convolution will only apply to the color
channels. In this case, the filter will temporarily unpremultiply the color
component values, apply the kernel, and then re-premultiply at the end.

If preserveAlpha is not specified, then the effect is as if a value of
'false' were specified.

feDiffuseLighting Filter Element

See also

http://www.w3.org/TR/SVG11/filters.html#feDiffuseLightingElement

This filter primitive lights an image using the alpha channel as a bump map. The
resulting image is an RGBA opaque image based on the light color with alpha = 1.0
everywhere. The lighting calculation follows the standard diffuse component of
the Phong lighting model. The resulting image depends on the light color, light
position and surface geometry of the input bump map.

The light map produced by this filter primitive can be combined with a texture
image using the multiply term of the arithmetic feComposite compositing method.
Multiple light sources can be simulated by adding several of these light maps
together before applying it to the texture image.

For common properties see: Filter Primitives Overview

Methods

	
feDiffuseLighting.feDistantLight(azimuth=0, elevation=0, **extra)

	create and add a light source: feDistantLight Filter Element

	
feDiffuseLighting.fePointLight(source=(0, 0, 0), **extra)

	
	Parameters

	source – source 3D point (x, y, z)

create and add a light source: fePointLight Filter Element

	
feDiffuseLighting.feSpotLight(source=(0, 0, 0), target=(0, 0, 0), **extra)

	
	Parameters

	
	source – source 3D point (x, y, z)

	target – target 3D point (pointsAtX, pointsAtY, pointsAtZ)

create and add a light source: feSpotLight Filter Element

SVG Attributes

	in – (see in attribute)

	surfaceScale – <number>

height of surface when Ain = 1.

If the attribute is not specified, then the effect is as if a value of 1
were specified.

	diffuseConstant – <number>

kd in Phong lighting model. In SVG, this can be any non-negative number.

If the attribute is not specified, then the effect is as if a value of 1
were specified.

	kernelUnitLength – <number-optional-number>

The first number is the <dx> value. The second number is the <dy> value.
If the <dy> value is not specified, it defaults to the same value as <dx>.
Indicates the intended distance in current filter units (i.e., units as
determined by the value of attribute primitiveUnits) between successive
columns and rows, respectively, in the kernelMatrix. By specifying
value(s) for kernelUnitLength, the kernel becomes defined in a scalable,
abstract coordinate system. If kernelUnitLength is not specified, the
default value is one pixel in the offscreen bitmap, which is a pixel-based
coordinate system, and thus potentially not scalable. For some level of
consistency across display media and user agents, it is necessary that a
value be provided for at least one of filterRes and kernelUnitLength.
In some implementations, the most consistent results and the fastest performance
will be achieved if the pixel grid of the temporary offscreen images aligns
with the pixel grid of the kernel. A negative or zero value is an error.

	lighting-color – 'currentColor' | <color> [<icccolor>] | 'inherit'

The lighting-color property defines the color of the light source for
filter primitives feDiffuseLighting and feSpecularLighting.

feDisplacementMap Filter Element

See also

http://www.w3.org/TR/SVG11/filters.html#feDisplacementMapElement

This filter primitive uses the pixels values from the image from in2 to
spatially displace the image from in.

This filter can have arbitrary non-localized effect on the input which might
require substantial buffering in the processing pipeline. However with this
formulation, any intermediate buffering needs can be determined by scale which
represents the maximum range of displacement in either x or y.

When applying this filter, the source pixel location will often lie between
several source pixels. In this case it is recommended that high quality viewers
apply an interpolent on the surrounding pixels, for example bilinear or bicubic,
rather than simply selecting the nearest source pixel. Depending on the speed of
the available interpolents, this choice may be affected by the
image-rendering property setting.

The color-interpolation-filters property only applies to the in2 source
image and does not apply to the in source image. The ‘in’ source image must
remain in its current color space.

For common properties see: Filter Primitives Overview

SVG Attributes

	in – (see in attribute)

	in2 – (see in attribute)

The second input image, which is used to displace the pixels in the image
from attribute in. This attribute can take on the same values as the
in attribute.

	scale – <number>

Displacement scale factor. The amount is expressed in the coordinate system
established by attribute primitiveUnits on the filter element.

When the value of this attribute is '0', this operation has no effect on the
source image.

If the attribute is not specified, then the effect is as if a value of '0'
were specified.

	xChannelSelector – 'R | G | B | A'

Indicates which channel from in2 to use to displace the pixels in in
along the x-axis. If attribute xChannelSelector is not specified, then
the effect is as if a value of 'A' were specified.

	yChannelSelector – 'R | G | B | A'

Indicates which channel from in2 to use to displace the pixels in in
along the y-axis. If attribute yChannelSelector is not specified, then
the effect is as if a value of 'A' were specified.

feFlood Filter Element

See also

http://www.w3.org/TR/SVG11/filters.html#feFloodElement

This filter primitive creates a rectangle filled with the color and opacity
values from properties flood-color and flood-opacity. The rectangle is
as large as the filter primitive subregion established by the x, y,
width and height attributes on the feFlood element.

For common properties see: Filter Primitives Overview

SVG Attributes

	flood-color – 'currentColor' | <color> [<icccolor>] | ' inherit'

initial value is 'black'

	flood-opacity – <opacity-value> | 'inherit'

initial value is '1'

feGaussianBlur Filter Element

See also

http://www.w3.org/TR/SVG11/filters.html#feGaussianBlurElement

This filter primitive performs a Gaussian blur on the input image.

Frequently this operation will take place on alpha-only images, such as that
produced by the built-in input, 'SourceAlpha'. The implementation may notice
this and optimize the single channel case. If the input has infinite extent and
is constant, this operation has no effect. If the input has infinite extent and
is a tile, the filter is evaluated with periodic boundary conditions.

For common properties see: Filter Primitives Overview

SVG Attributes

	in – (see in attribute)

	stdDeviation – <number-optional-number>

The standard deviation for the blur operation. If two <number>s are
provided, the first number represents a standard deviation value along the
x-axis of the coordinate system established by attribute primitiveUnits
on the filter element. The second value represents a standard deviation
in Y. If one number is provided, then that value is used for both X and Y.

A negative value is an error. A value of zero disables the effect of the
given filter primitive (i.e., the result is the filter input image).

If the attribute is not specified, then the effect is as if a value of '0'
were specified.

feImage Filter Element

See also

http://www.w3.org/TR/SVG11/filters.html#feImageElement

This filter primitive refers to a graphic external to this filter element, which
is loaded or rendered into an RGBA raster and becomes the result of the filter
primitive.

This filter primitive can refer to an external image or can be a reference to
another piece of SVG. It produces an image similar to the built-in image source
'SourceGraphic' except that the graphic comes from an external source.

If the xlink:href references a stand-alone image resource such as a
JPEG, PNG or SVG file, then the image resource is rendered according to the
behavior of the image element; otherwise, the referenced resource is rendered
according to the behavior of the use element. In either case, the current
user coordinate system depends on the value of attribute primitiveUnits on
the filter element. The processing of the preserveAspectRatio attribute
on the feImage element is identical to that of the image element.

When the referenced image must be resampled to match the device coordinate system,
it is recommended that high quality viewers make use of appropriate interpolation
techniques, for example bilinear or bicubic. Depending on the speed of the
available interpolents, this choice may be affected by the image-rendering
property setting.

For common properties see: Filter Primitives Overview

SVG Attributes

	xlink:href – <iri>

A IRI reference to the image source.

	preserveAspectRatio – '[defer] <align> [<meetOrSlice>]'

If attribute preserveAspectRatio is not specified, then the effect is
as if a value of 'xMidYMid' meet were specified.

feMerge Filter Element

See also

http://www.w3.org/TR/SVG11/filters.html#feMergeElement

This filter primitive composites input image layers on top of each other using
the over operator with Input1 (corresponding to the first feMergeNode child
element) on the bottom and the last specified input, InputN (corresponding to
the last feMergeNode child element), on top.

Many effects produce a number of intermediate layers in order to create the final
output image. This filter allows us to collapse those into a single image.
Although this could be done by using n-1 Composite-filters, it is more
convenient to have this common operation available in this form, and
offers the implementation some additional flexibility.

Each feMerge element can have any number of feMergeNode subelements,
each of which has an in attribute.

The canonical implementation of feMerge is to render the entire effect into one
RGBA layer, and then render the resulting layer on the output device. In certain
cases (in particular if the output device itself is a continuous tone device),
and since merging is associative, it might be a sufficient approximation to
evaluate the effect one layer at a time and render each layer individually onto
the output device bottom to top.

If the topmost image input is 'SourceGraphic' and this feMerge is the
last filter primitive in the filter, the implementation is encouraged to render
the layers up to that point, and then render the SourceGraphic directly from its
vector description on top.

For common properties see: Filter Primitives Overview

	
Filter.feMerge(layernames, **extra)

	
	Parameters

	layernames (list) – layernames as strings

Create a feMerge filter, containing several feMergeNode subelements,
with the input sources specified by layernames.

Methods

	
feMerge.feMergeNode(layernames)

	
	Parameters

	layernames (list) – layernames as strings

Add several feMergeNode subelements, with the input sources specified by
layernames.

feMorphology Filter Element

See also

http://www.w3.org/TR/SVG11/filters.html#feMorphologyElement

This filter primitive performs “fattening” or “thinning” of artwork. It is
particularly useful for fattening or thinning an alpha channel.

The dilation (or erosion) kernel is a rectangle with a width of 2*x-radius and a
height of 2*y-radius. In dilation, the output pixel is the individual
component-wise maximum of the corresponding R,G,B,A values in the input image’s
kernel rectangle. In erosion, the output pixel is the individual component-wise
minimum of the corresponding R,G,B,A values in the input image’s kernel rectangle.

Frequently this operation will take place on alpha-only images, such as that
produced by the built-in input, 'SourceAlpha'. In that case, the implementation
might want to optimize the single channel case.

If the input has infinite extent and is constant, this operation has no effect.
If the input has infinite extent and is a tile, the filter is evaluated with
periodic boundary conditions.

Because feMorphology operates on premultipied color values, it will always
result in color values less than or equal to the alpha channel.

For common properties see: Filter Primitives Overview

SVG Attributes

	in – (see in attribute)

	operator – 'erode | dilate'

A keyword indicating whether to erode (i.e., thin) or dilate (fatten) the
source graphic. If attribute operator is not specified, then the effect
is as if a value of 'erode' were specified.

	radius – <number-optional-number>

The radius (or radii) for the operation. If two <number>s are provided,
the first number represents a x-radius and the second value represents a
y-radius. If one number is provided, then that value is used for both X and
Y. The values are in the coordinate system established by attribute
primitiveUnits on the filter element.

A negative value is an error. A value of zero disables the effect of the
given filter primitive (i.e., the result is a transparent black image).

If the attribute is not specified, then the effect is as if a value of '0'
were specified.

feOffset Filter Element

See also

http://www.w3.org/TR/SVG11/filters.html#feOffsetElement

This filter primitive offsets the input image relative to its current position
in the image space by the specified vector.

This is important for effects like drop shadows.

When applying this filter, the destination location may be offset by a fraction
of a pixel in device space. In this case a high quality viewer should make use
of appropriate interpolation techniques, for example bilinear or bicubic. This
is especially recommended for dynamic viewers where this interpolation provides
visually smoother movement of images. For static viewers this is less of a concern.
Close attention should be made to the image-rendering property setting to
determine the authors intent.

For common properties see: Filter Primitives Overview

SVG Attributes

	in – (see in attribute)

	dx – <number>

The amount to offset the input graphic along the x-axis. The offset amount
is expressed in the coordinate system established by attribute primitiveUnits
on the filter element.

If the attribute is not specified, then the effect is as if a value of '0'
were specified.

	dy – <number>

The amount to offset the input graphic along the y-axis. The offset amount
is expressed in the coordinate system established by attribute primitiveUnits
on the filter element.

If the attribute is not specified, then the effect is as if a value of '0'
were specified.

feSpecularLighting Filter Element

See also

http://www.w3.org/TR/SVG11/filters.html#feSpecularLightingElement

This filter primitive lights a source graphic using the alpha channel as a bump
map. The resulting image is an RGBA image based on the light color. The lighting
calculation follows the standard specular component of the Phong lighting model.
The resulting image depends on the light color, light position and surface
geometry of the input bump map. The result of the lighting calculation is added.
The filter primitive assumes that the viewer is at infinity in the z direction
(i.e., the unit vector in the eye direction is (0,0,1) everywhere).

This filter primitive produces an image which contains the specular reflection
part of the lighting calculation. Such a map is intended to be combined with a
texture using the add term of the arithmetic feComposite method. Multiple
light sources can be simulated by adding several of these light maps before
applying it to the texture image.

Unlike the feDiffuseLighting, the feSpecularLighting filter produces a
non-opaque image. This is due to the fact that the specular result is meant to be
added to the textured image. The alpha channel of the result is the max of the
color components, so that where the specular light is zero, no additional
coverage is added to the image and a fully white highlight will add opacity.

The feDiffuseLighting and feSpecularLighting filters will often be
applied together. An implementation may detect this and calculate both maps
in one pass, instead of two.

For common properties see: Filter Primitives Overview

Methods

	
feSpecularLighting.feDistantLight(azimuth=0, elevation=0, **extra)

	create and add a light source: feDistantLight Filter Element

	
feSpecularLighting.fePointLight(source=(0, 0, 0), **extra)

	
	Parameters

	source – source 3D point (x, y, z)

create and add a light source: fePointLight Filter Element

	
feSpecularLighting.feSpotLight(source=(0, 0, 0), target=(0, 0, 0), **extra)

	
	Parameters

	
	source – source 3D point (x, y, z)

	target – target 3D point (pointsAtX, pointsAtY, pointsAtZ)

create and add a light source: feSpotLight Filter Element

SVG Attributes

	in – (see in attribute)

	surfaceScale – <number>

height of surface when Ain = 1.

If the attribute is not specified, then the effect is as if a value of '1'
were specified.

	specularConstant – <number>

ks in Phong lighting model. In SVG, this can be any non-negative number.

If the attribute is not specified, then the effect is as if a value of '1'
were specified.

	specularExponent – <number>

Exponent for specular term, larger is more “shiny”. Range 1.0 to 128.0.

If the attribute is not specified, then the effect is as if a value of '1'
were specified.

	kernelUnitLength – <number-optional-number>

The first number is the <dx> value. The second number is the <dy> value.
If the <dy> value is not specified, it defaults to the same value as <dx>.
Indicates the intended distance in current filter units (i.e., units as
determined by the value of attribute primitiveUnits) between successive
columns and rows, respectively, in the kernelMatrix. By specifying
value(s) for kernelUnitLength, the kernel becomes defined in a scalable,
abstract coordinate system. If kernelUnitLength is not specified, the
default value is one pixel in the offscreen bitmap, which is a pixel-based
coordinate system, and thus potentially not scalable. For some level of
consistency across display media and user agents, it is necessary that a
value be provided for at least one of filterRes and kernelUnitLength.
In some implementations, the most consistent results and the fastest performance
will be achieved if the pixel grid of the temporary offscreen images aligns
with the pixel grid of the kernel. A negative or zero value is an error.

	lighting-color – 'currentColor' | <color> [<icccolor>] | 'inherit'

The lighting-color property defines the color of the light source for
filter primitives feDiffuseLighting and feSpecularLighting.

feTile Filter Element

See also

http://www.w3.org/TR/SVG11/filters.html#feTileElement

This filter primitive fills a target rectangle with a repeated, tiled pattern of
an input image. The target rectangle is as large as the filter primitive subregion
established by the x, y, width and height attributes on the
feTile element.

Typically, the input image has been defined with its own filter primitive
subregion in order to define a reference tile. feTile replicates the
reference tile in both X and Y to completely fill the target rectangle. The
top/left corner of each given tile is at location (x+i*width,y+j*height),
where (x,y) represents the top/left of the input image’s filter primitive
subregion, width and height represent the width and height of the input
image’s filter primitive subregion, and i and j can be any integer value.
In most cases, the input image will have a smaller filter primitive subregion
than the feTile in order to achieve a repeated pattern effect.

Implementers must take appropriate measures in constructing the tiled image to
avoid artifacts between tiles, particularly in situations where the user to
device transform includes shear and/or rotation. Unless care is taken,
interpolation can lead to edge pixels in the tile having opacity values lower or
higher than expected due to the interaction of painting adjacent tiles which
each have partial overlap with particular pixels.

For common properties see: Filter Primitives Overview

SVG Attributes

	in – (see in attribute)

feTurbulence Filter Element

See also

http://www.w3.org/TR/SVG11/filters.html#feTurbulenceElement

This filter primitive creates an image using the Perlin turbulence function. It
allows the synthesis of artificial textures like clouds or marble. For a
detailed description the of the Perlin turbulence function, see “Texturing and
Modeling”, Ebert et al, AP Professional, 1994. The resulting image will fill the
entire filter primitive subregion for this filter primitive.

For common properties see: Filter Primitives Overview

SVG Attributes

	in – (see in attribute)

	baseFrequency – <number-optional-number>

The base frequency (frequencies) parameter(s) for the noise function. If two
<number>s are provided, the first number represents a base frequency in
the X direction and the second value represents a base frequency in the Y
direction. If one number is provided, then that value is used for both X
and Y.

A negative value for base frequency is an error.

If the attribute is not specified, then the effect is as if a value of '0'
were specified.

	numOctaves – <integer>

The numOctaves parameter for the noise function.

If the attribute is not specified, then the effect is as if a value of '1'
were specified.

	seed – <number>

The starting number for the pseudo random number generator.

If the attribute is not specified, then the effect is as if a value of '0'
were specified. When the seed number is handed over to the algorithm above
it must first be truncated, i.e. rounded to the closest integer value
towards zero.

	stitchTiles – 'stitch | noStitch'

	'noStitch' – no attempt it made to achieve smooth transitions at the
border of tiles which contain a turbulence function. Sometimes the result
will show clear discontinuities at the tile borders.

	'stitch' – then the user agent will automatically adjust
baseFrequency-x and baseFrequency-y values such that the feTurbulence
node’s width and height (i.e., the width and height of the current
subregion) contains an integral number of the Perlin tile width and
height for the first octave. The baseFrequency will be adjusted up or
down depending on which way has the smallest relative (not absolute)
change as follows: Given the frequency, calculate
lowFreq=floor(width*frequency)/width and hiFreq=ceil(width*frequency)/width.
If frequency/lowFreq < hiFreq/frequency then use lowFreq, else use hiFreq.
While generating turbulence values, generate lattice vectors as normal for
Perlin Noise, except for those lattice points that lie on the right or
bottom edges of the active area (the size of the resulting tile). In
those cases, copy the lattice vector from the opposite edge of the active
area.

If attribute stitchTiles is not specified, then the effect is as if
a value of 'noStitch' were specified.

	type – 'fractalNoise | turbulence'

Indicates whether the filter primitive should perform a noise or turbulence
function. If attribute type is not specified, then the effect is as if
a value of 'turbulence' were specified.

feDistantLight Filter Element

The light source feDistantLight is a child element of the filter primitives
feDiffuseLighting or feSpecularLighting,
create and add this object with the method feDistantLight()
of the filter primitives feDiffuseLighting or feSpecularLighting.

See also

http://www.w3.org/TR/SVG11/filters.html#feDistantLightElement

SVG Attributes

	azimuth – <number>

Direction angle for the light source on the XY plane (clockwise), in degrees.

Default is '0'

	elevation – <number>

Direction angle for the light source on the YZ plane, in degrees.

Default is '0'

fePointLight Filter Element

The light source fePointLight is a child element of the filter primitives
feDiffuseLighting or feSpecularLighting,
create and add this object with the method fePointLight()
of the filter primitives feDiffuseLighting or feSpecularLighting.

The light source feDistantLight is a child element of the filter primitives
feDiffuseLighting or feSpecularLighting.

See also

http://www.w3.org/TR/SVG11/filters.html#fePointLightElement

SVG Attributes

	x – <number> – source parameter

X location for the light source in the coordinate system established by
attribute primitiveUnits on the filter element.

Default is '0'

	
	y – <number> – source parameter

	Y location for the light source in the coordinate system established by
attribute primitiveUnits on the filter element.

Default is '0'

	z – <number>– source parameter

Z location for the light source in the coordinate system established by
attribute primitiveUnits on the ‘filter’ element, assuming that, in the
initial coordinate system, the positive Z-axis comes out towards the person
viewing the content and assuming that one unit along the Z-axis equals one
unit in X and Y.

Default is '0'

feSpotLight Filter Element

The light source feSpotLight is a child element of the filter primitives
feDiffuseLighting or feSpecularLighting,
create and add this object with the method feSpotLight()
of the filter primitives feDiffuseLighting or feSpecularLighting.

See also

http://www.w3.org/TR/SVG11/filters.html#feSpotLightElement

SVG Attributes

	x, y, z – see fePointLight Filter Element

	pointsAtX – <number> – target parameter

X location in the coordinate system established by attribute
primitiveUnits on the filter element of the point at which the
light source is pointing.

Default is '0'

	pointsAtY – <number> – target parameter

Y location in the coordinate system established by attribute
primitiveUnits on the filter element of the point at which the
light source is pointing.

Default is '0'

	pointsAtZ – <number> – target parameter

Z location in the coordinate system established by attribute
primitiveUnits on the filter element of the point at which the light
source is pointing, assuming that, in the initial coordinate system, the
positive Z-axis comes out towards the person viewing the content and
assuming that one unit along the Z-axis equals one unit in X and Y.

Default is '0'

	specularExponent – <number>

Exponent value controlling the focus for the light source.

Default is '1'

	limitingConeAngle – <number>

A limiting cone which restricts the region where the light is projected. No
light is projected outside the cone. limitingConeAngle represents the
angle in degrees between the spot light axis (i.e. the axis between the
light source and the point to which it is pointing at) and the spot light
cone. User agents should apply a smoothing technique such as anti-aliasing
at the boundary of the cone.

If no value is specified, then no limiting cone will be applied.

ViewBox Mixin

	
class svgwrite.mixins.ViewBox

	The ViewBox mixin provides the ability to specify that a
given set of graphics stretch to fit a particular container element.

The value of the viewBox attribute is a list of four numbers
min-x, min-y, width and height, separated by whitespace
and/or a comma, which specify a rectangle in user space which should
be mapped to the bounds of the viewport established by the given element,
taking into account attribute preserveAspectRatio.

	
ViewBox.viewbox(minx=0, miny=0, width=0, height=0)

	Specify a rectangle in user space (no units allowed) which
should be mapped to the bounds of the viewport established by the
given element.

	Parameters

	
	minx (number) – left border of the viewBox

	miny (number) – top border of the viewBox

	width (number) – width of the viewBox

	height (number) – height of the viewBox

	
ViewBox.stretch()

	Stretch viewBox in x and y direction to fill viewport, does not
preserve aspect ratio.

	
ViewBox.fit(horiz='center', vert='middle', scale='meet')

	Set the preserveAspectRatio attribute.

	Parameters

	
	horiz (string) – horizontal alignment 'left | center | right'

	vert (string) – vertical alignment 'top | middle | bottom'

	scale (string) – scale method 'meet | slice'

	Scale methods

	Description

	'meet'

	preserve aspect ration and zoom to limits of viewBox

	'slice'

	preserve aspect ration and viewBox touch viewport on
all bounds, viewBox will extend beyond the bounds of
the viewport

Transform Mixin

	
class svgwrite.mixins.Transform

	The Transform mixin operates on the transform attribute.
The value of the transform attribute is a <transform-list>, which
is defined as a list of transform definitions, which are applied in the
order provided. The individual transform definitions are separated by
whitespace and/or a comma. All coordinates are user
space coordinates.

	
Transform.translate(tx, ty=None)

	Specifies a translation by tx and ty. If ty is not provided,
it is assumed to be zero.

	Parameters

	
	tx (number) – user coordinate - no units allowed

	ty (number) – user coordinate - no units allowed

	
Transform.rotate(angle, center=None)

	Specifies a rotation by angle degrees about a given point.
If optional parameter center are not supplied, the rotate is
about the origin of the current user coordinate system.

	Parameters

	
	angle (number) – rotate-angle in degrees

	center (2-tuple) – rotate-center as user coordinate - no units allowed

	
Transform.skewX(angle)

	Specifies a skew transformation along the x-axis.

	Parameters

	angle (number) – skew-angle in degrees, no units allowed

	
Transform.skewY(angle)

	Specifies a skew transformation along the y-axis.

	Parameters

	angle (number) – skew-angle in degrees, no units allowed

	
Transform.scale(sx, sy=None)

	Specifies a scale operation by sx and sy. If sy is not
provided, it is assumed to be equal to sx.

	Parameters

	
	sx (number) – scalar factor x-axis, no units allowed

	sy (number) – scalar factor y-axis, no units allowed

XLink Mixin

	
class svgwrite.mixins.XLink

	XLink mixin

	
XLink.set_href(element)

	Create a reference to element.

	Parameters

	element – if element is a string its the id name of the
referenced element, if element is a BaseElement class the id
SVG Attribute is used to create the reference.

	
XLink.set_xlink(title=None, show=None, role=None, arcrole=None)

	Set XLink attributes (for href use set_href()).

Set xlink:actuate and xlink:type by the index operator:

element['xlink:type'] = 'simple'
element['xlink:actuate'] = 'onLoad'

Presentation Mixin

	
class svgwrite.mixins.Presentation

	Helper methods to set presentation attributes.

	
Presentation.fill(color=None, rule=None, opacity=None)

	Set SVG Properties fill, fill-rule and fill-opacity.

See also

	http://www.w3.org/TR/SVG11/painting.html#FillProperty

	http://www.w3.org/TR/SVG11/painting.html#FillRuleProperty

	http://www.w3.org/TR/SVG11/painting.html#FillOpacityProperty

	
Presentation.stroke(color=None, width=None, opacity=None, linecap=None, linejoin=None, miterlimit=None)

	Set SVG Properties stroke, stroke-width, stroke-opacity,
stroke-linecap and stroke-miterlimit.

See also

	http://www.w3.org/TR/SVG11/painting.html#StrokeProperty

	http://www.w3.org/TR/SVG11/painting.html#StrokeWidthProperty

	http://www.w3.org/TR/SVG11/painting.html#StrokeOpacityProperty

	http://www.w3.org/TR/SVG11/painting.html#StrokeLinecapProperty

	http://www.w3.org/TR/SVG11/painting.html#StrokeMiterlimitProperty

	
Presentation.dasharray(dasharray=None, offset=None)

	Set SVG Properties stroke-dashoffset and stroke-dasharray.

Where dasharray specify the lengths of alternating dashes and gaps as
<list> of <int> or <float> values or a <string> of comma and/or white
space separated <lengths> or <percentages>. (e.g. as <list> dasharray=[1, 0.5]
or as <string> dasharray=’1 0.5’)

See also

	http://www.w3.org/TR/SVG11/painting.html#StrokeDasharrayProperty

	http://www.w3.org/TR/SVG11/painting.html#StrokeDashoffsetProperty

MediaGroup Mixin

SVG Tiny 1.2

valid for SVG Elements: animation, audio, desc, image, metadata, title, video

	
class svgwrite.mixins.MediaGroup

	Helper methods to set media group attributes.

	
MediaGroup.viewport_fill(color=None, opacity=None)

	Set SVG Properties viewport-fill and viewport-fill-opacity.

See also

	http://www.w3.org/TR/SVGMobile12/painting.html#viewport-fill-property

	http://www.w3.org/TR/SVGMobile12/painting.html#viewport-fill-opacity-property

Markers Mixin

	
class svgwrite.mixins.Markers

	Helper methods to set marker attributes.

	
Markers.set_markers(markers)

	Set markers for line elements (line, polygon, polyline, path) to
values specified by markers.

	if markers is a 3-tuple:

	attribute ‘marker-start’ = markers[0]

	attribute ‘marker-mid’ = markers[1]

	attribute ‘marker-end’ = markers[2]

	markers is a string or a Marker class:

	attribute ‘marker’ = FuncIRI of markers

See also

	http://www.w3.org/TR/SVG11/painting.html#MarkerProperty

	http://www.w3.org/TR/SVG11/painting.html#MarkerStartProperty

	http://www.w3.org/TR/SVG11/painting.html#MarkerMidProperty

	http://www.w3.org/TR/SVG11/painting.html#MarkerEndProperty

Clipping Mixin

	
class svgwrite.mixins.Clipping

	

	
Clipping.clip_rect(top='auto', right='auto', bottom='auto', left='auto')

	Set SVG Property clip.

See also

http://www.w3.org/TR/SVG11/masking.html#OverflowAndClipProperties

Inkscape Extension

This extension adds support for layers in inkscape [https://inkscape.org]. A layer in inkscape is an extended group container with
additional label and locked attributes. Inkscape supports nested layers.

First import the inkscape extension:

import svgwrite
from svgwrite.extensions import Inkscape

dwg = svgwrite.Drawing('test-inkscape-extension.svg', profile='full', size=(640, 480))

You have to activate the extension for each drawing, because additional XML name spaces are required:

inkscape = Inkscape(dwg)

Create a new layer, all attributes that are supported by the group container are also allowed:

top_layer = inkscape.layer(label="Top LAYER 1", locked=True)

Add new layer as top level layer to the SVG drawing:

dwg.add(top_layer)

Create new elements and add them to a layer:

line = dwg.line((100, 100), (300, 100), stroke=svgwrite.rgb(10, 10, 16, '%'), stroke_width=10)
top_layer.add(line)

text = dwg.text('Test', insert=(100, 100), font_size=100, fill='red')
top_layer.add(text)

Create another layer and add them as nested layer to “Top LAYER 1”:

nested_layer = inkscape.layer(label="Nested LAYER 2", locked=False)
top_layer.add(nested_layer)

text = dwg.text('Test2', insert=(100, 200), font_size=100, fill='blue')
nested_layer.add(text)

dwg.save()

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 svgwrite	

 	
 	
 svgwrite.drawing	

 	
 	
 svgwrite.gradients	

 	
 	
 svgwrite.text	

 	
 	
 svgwrite.utils	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X

_

 	
 	__getitem__() (svgwrite.base.BaseElement method)

 	__init__() (svgwrite.animate.Animate method)

 	(svgwrite.animate.AnimateMotion method)

 	(svgwrite.animate.AnimateTransform method)

 	(svgwrite.animate.Set method)

 	(svgwrite.base.BaseElement method)

 	(svgwrite.container.Hyperlink method)

 	(svgwrite.container.Marker method)

 	(svgwrite.container.SVG method)

 	(svgwrite.container.Script method)

 	(svgwrite.container.Style method)

 	(svgwrite.container.Use method)

 	(svgwrite.drawing.Drawing method)

 	(svgwrite.filters.Filter method)

 	(svgwrite.gradients.LinearGradient method)

 	(svgwrite.gradients.RadialGradient method)

 	(svgwrite.image.Image method)

 	(svgwrite.path.Path method)

 	(svgwrite.pattern.Pattern method)

 	(svgwrite.shapes.Circle method)

 	(svgwrite.shapes.Ellipse method)

 	(svgwrite.shapes.Line method)

 	(svgwrite.shapes.Polyline method)

 	(svgwrite.shapes.Rect method)

 	(svgwrite.solidcolor.SolidColor method)

 	(svgwrite.text.TRef method)

 	(svgwrite.text.TSpan method), [1]

 	(svgwrite.text.TextPath method)

 	
 	__setitem__() (svgwrite.base.BaseElement method)

A

 	
 	a() (svgwrite.drawing.Drawing method)

 	add() (Pattern method)

 	(svgwrite.base.BaseElement method)

 	(svgwrite.drawing.Drawing method)

 	add_stop_color() (svgwrite.gradients.LinearGradient method)

 	(svgwrite.gradients.RadialGradient method)

 	add_stylesheet() (svgwrite.drawing.Drawing method)

 	Animate (class in svgwrite.animate)

 	animate() (svgwrite.drawing.Drawing method)

 	
 	AnimateColor (class in svgwrite.animate)

 	animateColor() (svgwrite.drawing.Drawing method)

 	AnimateMotion (class in svgwrite.animate)

 	animateMotion() (svgwrite.drawing.Drawing method)

 	AnimateTransform (class in svgwrite.animate)

 	animateTransform() (svgwrite.drawing.Drawing method)

 	append() (svgwrite.container.Script method)

 	(svgwrite.container.Style method)

 	attribs (BaseElement attribute)

B

 	
 	BaseElement (class in svgwrite.base)

C

 	
 	Circle (class in svgwrite.shapes)

 	circle() (svgwrite.drawing.Drawing method)

 	clip_rect() (svgwrite.mixins.Clipping method)

 	
 	ClipPath (class in svgwrite.masking)

 	clipPath() (svgwrite.drawing.Drawing method)

 	Clipping (class in svgwrite.mixins)

 	commands

D

 	
 	dasharray() (svgwrite.mixins.Presentation method)

 	Defs (class in svgwrite.container)

 	
 	defs (SVG attribute)

 	(svgwrite.drawing.Drawing attribute)

 	Drawing (class in svgwrite.drawing)

E

 	
 	elements (BaseElement attribute)

 	Ellipse (class in svgwrite.shapes)

 	ellipse() (svgwrite.drawing.Drawing method)

 	
 	embed_font() (svgwrite.container.SVG method)

 	embed_google_web_font() (svgwrite.container.SVG method)

 	embed_stylesheet() (svgwrite.container.SVG method)

F

 	
 	feBlend() (Filter method)

 	feColorMatrix() (Filter method)

 	feComponentTransfer() (Filter method)

 	feComposite() (Filter method)

 	feConvolveMatrix() (Filter method)

 	feDiffuseLighting() (Filter method)

 	feDisplacementMap() (Filter method)

 	feDistantLight() (feDiffuseLighting method)

 	(feSpecularLighting method)

 	feFlood() (Filter method)

 	feFuncA()

 	feFuncB()

 	feFuncG()

 	feFuncR()

 	feGaussianBlur() (Filter method)

 	feImage() (Filter method)

 	feMerge() (Filter method)

 	
 	feMergeNode() (feMerge method)

 	feMorphology() (Filter method)

 	feOffset() (Filter method)

 	fePointLight() (feDiffuseLighting method)

 	(feSpecularLighting method)

 	feSpecularLighting() (Filter method)

 	feSpotLight() (feDiffuseLighting method)

 	(feSpecularLighting method)

 	feTile() (Filter method)

 	feTurbulence() (Filter method)

 	filename (svgwrite.drawing.Drawing attribute)

 	fill() (svgwrite.mixins.Presentation method)

 	Filter (class in svgwrite.filters)

 	filter() (svgwrite.drawing.Drawing method)

 	fit() (svgwrite.image.Image method)

 	(svgwrite.mixins.ViewBox method)

 	freeze() (svgwrite.animate.Animate method)

G

 	
 	g() (svgwrite.drawing.Drawing method)

 	get_funciri() (svgwrite.base.BaseElement method)

 	get_id() (svgwrite.base.BaseElement method)

 	get_iri() (svgwrite.base.BaseElement method)

 	get_paint_server() (svgwrite.gradients.LinearGradient method)

 	(svgwrite.gradients.RadialGradient method)

 	
 	get_unit() (in module svgwrite.utils)

 	get_xml() (svgwrite.base.BaseElement method)

 	(svgwrite.drawing.Drawing method)

 	Group (class in svgwrite.container)

H

 	
 	Hyperlink (class in svgwrite.container)

I

 	
 	Image (class in svgwrite.image)

 	
 	image() (svgwrite.drawing.Drawing method)

 	iterflatlist() (in module svgwrite.utils)

L

 	
 	Line (class in svgwrite.shapes)

 	line() (svgwrite.drawing.Drawing method)

 	
 	LinearGradient (class in svgwrite.gradients)

 	linearGradient() (svgwrite.drawing.Drawing method)

M

 	
 	Marker (class in svgwrite.container)

 	marker() (svgwrite.drawing.Drawing method)

 	Markers (class in svgwrite.mixins)

 	
 	Mask (class in svgwrite.masking)

 	mask() (svgwrite.drawing.Drawing method)

 	MediaGroup (class in svgwrite.mixins)

P

 	
 	Path (class in svgwrite.path)

 	path() (svgwrite.drawing.Drawing method)

 	Pattern (class in svgwrite.pattern)

 	points (Polyline attribute)

 	Polygon (class in svgwrite.shapes)

 	polygon() (svgwrite.drawing.Drawing method)

 	
 	Polyline (class in svgwrite.shapes)

 	polyline() (svgwrite.drawing.Drawing method)

 	Presentation (class in svgwrite.mixins)

 	pretty_xml() (in module svgwrite.utils)

 	push() (svgwrite.path.Path method)

 	push_arc() (svgwrite.path.Path method)

R

 	
 	RadialGradient (class in svgwrite.gradients)

 	radialGradient() (svgwrite.drawing.Drawing method)

 	Rect (class in svgwrite.shapes)

 	
 	rect() (svgwrite.drawing.Drawing method)

 	rect_top_left_corner() (in module svgwrite.utils)

 	rgb() (in module svgwrite.utils)

 	rotate() (svgwrite.mixins.Transform method)

S

 	
 	save() (svgwrite.drawing.Drawing method)

 	saveas() (svgwrite.drawing.Drawing method)

 	scale() (svgwrite.mixins.Transform method)

 	Script (class in svgwrite.container)

 	script() (svgwrite.drawing.Drawing method)

 	Set (class in svgwrite.animate)

 	set() (svgwrite.drawing.Drawing method)

 	set_desc() (svgwrite.base.BaseElement method)

 	set_event() (svgwrite.animate.Animate method)

 	set_href() (Animate method)

 	(svgwrite.mixins.XLink method)

 	(svgwrite.text.TRef method)

 	set_markers() (svgwrite.mixins.Markers method)

 	set_metadata() (svgwrite.base.BaseElement method)

 	set_target() (svgwrite.animate.Animate method)

 	set_timing() (svgwrite.animate.Animate method)

 	set_value() (svgwrite.animate.Animate method)

 	(svgwrite.animate.AnimateMotion method)

 	set_xlink() (svgwrite.mixins.XLink method)

 	
 	skewX() (svgwrite.mixins.Transform method)

 	skewY() (svgwrite.mixins.Transform method)

 	SolidColor (class in svgwrite.solidcolor)

 	split_angle() (in module svgwrite.utils)

 	split_coordinate() (in module svgwrite.utils)

 	stretch() (svgwrite.image.Image method)

 	(svgwrite.mixins.ViewBox method)

 	strlist() (in module svgwrite.utils)

 	stroke() (svgwrite.mixins.Presentation method)

 	Style (class in svgwrite.container)

 	style() (svgwrite.drawing.Drawing method)

 	SVG (class in svgwrite.container)

 	svg() (svgwrite.drawing.Drawing method)

 	svgwrite (module)

 	svgwrite.drawing (module)

 	svgwrite.gradients (module)

 	svgwrite.text (module)

 	svgwrite.utils (module)

 	Symbol (class in svgwrite.container)

 	symbol() (svgwrite.drawing.Drawing method)

T

 	
 	Text (class in svgwrite.text)

 	text (svgwrite.text.TSpan attribute)

 	text() (svgwrite.drawing.Drawing method)

 	TextArea (class in svgwrite.text)

 	textArea() (svgwrite.drawing.Drawing method)

 	TextPath (class in svgwrite.text)

 	textPath() (svgwrite.drawing.Drawing method)

 	
 	tostring() (svgwrite.base.BaseElement method)

 	(svgwrite.drawing.Drawing method)

 	Transform (class in svgwrite.mixins)

 	translate() (svgwrite.mixins.Transform method)

 	TRef (class in svgwrite.text)

 	tref() (svgwrite.drawing.Drawing method)

 	TSpan (class in svgwrite.text)

 	tspan() (svgwrite.drawing.Drawing method)

U

 	
 	update() (svgwrite.base.BaseElement method)

 	
 	Use (class in svgwrite.container)

 	use() (svgwrite.drawing.Drawing method)

V

 	
 	ViewBox (class in svgwrite.mixins)

 	
 	viewbox() (svgwrite.mixins.ViewBox method)

 	viewport_fill() (svgwrite.mixins.MediaGroup method)

W

 	
 	write() (svgwrite.drawing.Drawing method)

 	(svgwrite.text.TextArea method)

X

 	
 	XLink (class in svgwrite.mixins)

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 svgwrite 1.4.3 documentation

 		
 Overview

 		
 SVG Elements

 		
 Structural Elements

 		
 Graphical Elements

 		
 Text Objects

 		
 Paint Server

 		
 Masking

 		
 Animation

 		
 Filter Effects

 		
 Mixins

 		
 Common Attributes

 		
 Core Attributes

 		
 Conditional Processing Attributes

 		
 Document Event Attributes

 		
 Graphical Event Attributes

 		
 Presentation Attributes

 		
 XLink Attributes

 		
 Basic Data Types

 		
 Numbers

 		
 Angles

 		
 Length

 		
 Coordinates

 		
 Units

 		
 SVG References

 		
 Additional SVG Documentation

 		
 SVG Implementation Status

 		
 svgwrite module

 		
 SVG Version

 		
 utils module

 		
 BaseElement

 		
 Attributes

 		
 Methods

 		
 Common SVG Attributes

 		
 Drawing

 		
 Attributes

 		
 Methods

 		
 Factory Methods

 		
 Parent Classes

 		
 SVG

 		
 Attributes

 		
 Parent Classes

 		
 SVG Attributes

 		
 Standard SVG Attributes

 		
 Group

 		
 Parent Classes

 		
 SVG Attributes

 		
 Standard SVG Attributes

 		
 Defs

 		
 Parent Classes

 		
 SVG Attributes

 		
 Standard SVG Attributes

 		
 Symbol

 		
 Parent Classes

 		
 SVG Attributes

 		
 Standard SVG Attributes

 		
 Marker

 		
 Parent Classes

 		
 SVG Attributes

 		
 Standard SVG Attributes

 		
 Use

 		
 Parent Classes

 		
 SVG Attributes

 		
 Standard SVG Attributes

 		
 Hyperlink

 		
 Parent Classes

 		
 SVG Attributes

 		
 Standard SVG Attributes

 		
 Script

 		
 Parent Classes

 		
 SVG Attributes

 		
 Standard SVG Attributes

 		
 Style

 		
 Parent Classes

 		
 SVG Attributes

 		
 Standard SVG Attributes

 		
 Path

 		
 Attributes

 		
 Methods

 		
 Parent Classes

 		
 Path Commands

 		
 SVG Attributes

 		
 Standard SVG Attributes

 		
 Line

 		
 SVG Attributes

 		
 Common SVG Attributes

 		
 Common Standard SVG Attributes

 		
 Parent Classes

 		
 Rect

 		
 SVG Attributes

 		
 Parent Classes

 		
 Circle

 		
 SVG Attributes

 		
 Parent Classes

 		
 Ellipse

 		
 SVG Attributes

 		
 Parent Classes

 		
 Polyline

 		
 Attributes

 		
 SVG Attributes

 		
 Parent Classes

 		
 Polygon

 		
 Parent Classes

 		
 Basic Shapes Examples

 		
 basic_shapes.svg

 		
 Image

 		
 Methods

 		
 Parent Classes

 		
 SVG Attributes

 		
 Standard SVG Attributes

 		
 Text

 		
 Parent Classes

 		
 TSpan

 		
 Attributes

 		
 Methods

 		
 Parent Classes

 		
 SVG Attributes

 		
 Standard SVG Attributes

 		
 TRef

 		
 Parent Classes

 		
 SVG Attributes

 		
 Standard SVG Attributes

 		
 TextPath

 		
 Methods

 		
 Parent Classes

 		
 SVG Attributes

 		
 Standard SVG Attributes

 		
 TextArea

 		
 Methods

 		
 Parent Classes

 		
 SVG Attributes

 		
 LinearGradient

 		
 Methods

 		
 SVG Attributes

 		
 RadialGradient

 		
 Methods

 		
 SVG Attributes

 		
 Pattern

 		
 Methods

 		
 SVG Attributes

 		
 SolidColor

 		
 Methods

 		
 SVG Attributes

 		
 ClipPath

 		
 SVG Attributes

 		
 Standard SVG Attributes

 		
 Mask

 		
 SVG Attributes

 		
 Standard SVG Attributes

 		
 animate module

 		
 Set

 		
 Parent Classes

 		
 Methods

 		
 SVG Animation Attributes

 		
 SVG Attributes

 		
 Standard SVG Attributes

 		
 AnimateMotion

 		
 Parent Classes

 		
 Methods

 		
 SVG Animation Attributes

 		
 SVG Attributes

 		
 Standard SVG Attributes

 		
 Animate

 		
 Parent Classes

 		
 Methods

 		
 SVG Animation Attributes

 		
 SVG Attributes

 		
 Standard SVG Attributes

 		
 AnimateColor

 		
 Parent Classes

 		
 SVG Animation Attributes

 		
 Standard SVG Attributes

 		
 AnimateTransform

 		
 Parent Classes

 		
 Methods

 		
 SVG Animation Attributes

 		
 SVG Attributes

 		
 Standard SVG Attributes

 		
 SVG Animation Attributes

 		
 Animation Events Attributes

 		
 onbegin

 		
 onend

 		
 onrepeat

 		
 onload

 		
 Animation Target Attributes

 		
 attributeType

 		
 attributeName

 		
 Animation Timing Attributes

 		
 begin

 		
 dur

 		
 end

 		
 min

 		
 max

 		
 restart

 		
 repeatCount

 		
 repeatDur

 		
 fill

 		
 Animation Value Attributes

 		
 calcMode

 		
 values

 		
 keyTimes

 		
 keySplines

 		
 from

 		
 to

 		
 by

 		
 Animation Addition Attributes

 		
 additive

 		
 accumulate

 		
 Introduction

 		
 Filter Element

 		
 Parent Classes

 		
 Methods

 		
 SVG Attributes

 		
 Standard SVG Attributes

 		
 Example

 		
 Filter Primitives Overview

 		
 Common SVG Attributes for Filter Primitives

 		
 feBlend Filter Element

 		
 SVG Attributes

 		
 feColorMatrix Filter Element

 		
 SVG Attributes

 		
 feComponentTransfer Filter Element

 		
 SVG Attributes

 		
 Methods

 		
 Parameters for feFuncX() Methods

 		
 feComposite Filter Element

 		
 SVG Attributes

 		
 feConvolveMatrix Filter Element

 		
 SVG Attributes

 		
 feDiffuseLighting Filter Element

 		
 Methods

 		
 SVG Attributes

 		
 feDisplacementMap Filter Element

 		
 SVG Attributes

 		
 feFlood Filter Element

 		
 SVG Attributes

 		
 feGaussianBlur Filter Element

 		
 SVG Attributes

 		
 feImage Filter Element

 		
 SVG Attributes

 		
 feMerge Filter Element

 		
 Methods

 		
 feMorphology Filter Element

 		
 SVG Attributes

 		
 feOffset Filter Element

 		
 SVG Attributes

 		
 feSpecularLighting Filter Element

 		
 Methods

 		
 SVG Attributes

 		
 feTile Filter Element

 		
 SVG Attributes

 		
 feTurbulence Filter Element

 		
 SVG Attributes

 		
 feDistantLight Filter Element

 		
 SVG Attributes

 		
 fePointLight Filter Element

 		
 SVG Attributes

 		
 feSpotLight Filter Element

 		
 SVG Attributes

 		
 ViewBox Mixin

 		
 Transform Mixin

 		
 XLink Mixin

 		
 Presentation Mixin

 		
 MediaGroup Mixin

 		
 Markers Mixin

 		
 Clipping Mixin

 		
 Inkscape Extension

